These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 35736317)

  • 1. Pilot-Scale Selective Electrodialysis for the Separation of Chloride and Sulphate from High-Salinity Wastewater.
    Li F; Guo Y; Wang S
    Membranes (Basel); 2022 Jun; 12(6):. PubMed ID: 35736317
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced separation of monovalent and divalent ions in high salinity wastewater by selective electrodialysis: Experimental investigation and performance prediction.
    Tan M; Zhao J; Liu Y; Liu F; Zhang Y
    Sci Total Environ; 2024 Jun; 946():174103. PubMed ID: 38908603
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Separation of Chloride and Sulfate Ions from Desulfurization Wastewater Using Monovalent Anions Selective Electrodialysis.
    Tian X; Yue D; Hou T; Xiao F; Wang Z; Cai W
    Membranes (Basel); 2024 Mar; 14(4):. PubMed ID: 38668101
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monovalent selective electrodialysis: Modelling multi-ionic transport across selective membranes.
    Rehman D; Ahdab YD; Lienhard JH
    Water Res; 2021 Jul; 199():117171. PubMed ID: 33989855
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrated loose nanofiltration-electrodialysis process for sustainable resource extraction from high-salinity textile wastewater.
    Lin J; Chen Q; Huang X; Yan Z; Lin X; Ye W; Arcadio S; Luis P; Bi J; Van der Bruggen B; Zhao S
    J Hazard Mater; 2021 Oct; 419():126505. PubMed ID: 34214850
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Valorization of Seawater Reverse Osmosis Brine by Monovalent Ion-Selective Membranes through Electrodialysis.
    Sharma PP; Mohammed S; Aburabie J; Hashaikeh R
    Membranes (Basel); 2023 May; 13(6):. PubMed ID: 37367766
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pilot Demonstration of Reclaiming Municipal Wastewater for Irrigation Using Electrodialysis Reversal: Effect of Operational Parameters on Water Quality.
    Xu X; He Q; Ma G; Wang H; Nirmalakhandan N; Xu P
    Membranes (Basel); 2021 Apr; 11(5):. PubMed ID: 33946493
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Removal of fluoride from multicomponent water solutions with the use of monovalent selective ion-exchange membranes.
    Grzegorzek M; Majewska-Nowak K; Ahmed AE
    Sci Total Environ; 2020 Jun; 722():137681. PubMed ID: 32208237
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A study on near zero liquid discharge approach for the treatment of reverse osmosis membrane concentrate by electrodialysis.
    Balcik-Canbolat C; Sengezer C; Sakar H; Karagunduz A; Keskinler B
    Environ Technol; 2020 Jan; 41(4):440-449. PubMed ID: 30010517
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selective removal of arsenic and monovalent ions from brackish water reverse osmosis concentrate.
    Xu P; Capito M; Cath TY
    J Hazard Mater; 2013 Sep; 260():885-91. PubMed ID: 23892312
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Power Generation Performance of a Pilot-Scale Reverse Electrodialysis Using Monovalent Selective Ion-Exchange Membranes.
    Mehdizadeh S; Kakihana Y; Abo T; Yuan Q; Higa M
    Membranes (Basel); 2021 Jan; 11(1):. PubMed ID: 33401447
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design of Monovalent Ion Selective Membranes for Reducing the Impacts of Multivalent Ions in Reverse Electrodialysis.
    Besha AT; Tsehaye MT; Aili D; Zhang W; Tufa RA
    Membranes (Basel); 2019 Dec; 10(1):. PubMed ID: 31906203
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An investigation of desalination by nanofiltration, reverse osmosis and integrated (hybrid NF/RO) membranes employed in brackish water treatment.
    Talaeipour M; Nouri J; Hassani AH; Mahvi AH
    J Environ Health Sci Eng; 2017; 15():18. PubMed ID: 28736617
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characteristics of heavy metal separation and determination of limiting current density in a pilot-scale electrodialysis process for plating wastewater treatment.
    Min KJ; Kim JH; Park KY
    Sci Total Environ; 2021 Feb; 757():143762. PubMed ID: 33316530
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anaerobic swine digestate valorization via energy-efficient electrodialysis for nutrient recovery and water reclamation.
    Wei CY; Pan SY; Lin YI; Cao TN
    Water Res; 2022 Oct; 224():119066. PubMed ID: 36099763
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lactic Acid and Salt Separation Using Membrane Technology.
    Talebi S; Garthe M; Roghmans F; Chen GQ; Kentish SE
    Membranes (Basel); 2021 Feb; 11(2):. PubMed ID: 33546208
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrodialysis Applications in Wastewater Treatment for Environmental Protection and Resources Recovery: A Systematic Review on Progress and Perspectives.
    Gurreri L; Tamburini A; Cipollina A; Micale G
    Membranes (Basel); 2020 Jul; 10(7):. PubMed ID: 32660014
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Membrane Design Principles for Ion-Selective Electrodialysis: An Analysis for Li/Mg Separation.
    Wang R; Lin S
    Environ Sci Technol; 2024 Feb; 58(7):3552-63. PubMed ID: 38324772
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanofiber Based Organic Solvent Anion Exchange Membranes for Selective Separation of Monovalent anions.
    Zhao Y; Mai Z; Shen P; Ortega E; Shen J; Gao C; Van der Bruggen B
    ACS Appl Mater Interfaces; 2020 Feb; 12(6):7539-7547. PubMed ID: 31978301
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of energy efficiency and power density in pressure retarded osmosis and reverse electrodialysis.
    Yip NY; Elimelech M
    Environ Sci Technol; 2014 Sep; 48(18):11002-12. PubMed ID: 25157687
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.