These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 35736642)

  • 1. Characterization of Hydration Water Bound to Choline Phosphate-Containing Polymers.
    Shiomoto S; Inoue K; Higuchi H; Nishimura SN; Takaba H; Tanaka M; Kobayashi M
    Biomacromolecules; 2022 Jul; 23(7):2999-3008. PubMed ID: 35736642
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Understanding the Effect of Hydration on the Bio-inert Properties of 2-Hydroxyethyl Methacrylate Copolymers with Small Amounts of Amino- or/and Fluorine-Containing Monomers.
    Koguchi R; Jankova K; Hayasaka Y; Kobayashi D; Amino Y; Miyajima T; Kobayashi S; Murakami D; Yamamoto K; Tanaka M
    ACS Biomater Sci Eng; 2020 May; 6(5):2855-2866. PubMed ID: 33463271
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Clarification of the blood compatibility mechanism by controlling the water structure at the blood-poly(meth)acrylate interface.
    Tanaka M; Mochizuki A
    J Biomater Sci Polym Ed; 2010; 21(14):1849-63. PubMed ID: 20699056
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of non-freezing water in different nonfouling materials by differential scanning calorimetry.
    Ma G; Ji F; Lin W; Chen S
    J Biomater Sci Polym Ed; 2022 Jun; 33(8):1012-1024. PubMed ID: 35073220
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elucidating the Feature of Intermediate Water in Hydrated Poly(ω-methoxyalkyl acrylate)s by Molecular Dynamics Simulation and Differential Scanning Calorimetry Measurement.
    Kuo AT; Sonoda T; Urata S; Koguchi R; Kobayashi S; Tanaka M
    ACS Biomater Sci Eng; 2020 Jul; 6(7):3915-3924. PubMed ID: 33463341
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The unique hydration state of poly(2-methacryloyloxyethyl phosphorylcholine).
    Ishihara K; Mu M; Konno T; Inoue Y; Fukazawa K
    J Biomater Sci Polym Ed; 2017; 28(10-12):884-899. PubMed ID: 28276997
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reduced protein adsorption on novel phospholipid polymers.
    Ishihara K; Iwasaki Y
    J Biomater Appl; 1998 Oct; 13(2):111-27. PubMed ID: 9777463
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Studies on bound water restrained by poly(2-methacryloyloxyethyl phosphorylcholine): Comparison with polysaccharide-water systems.
    Hatakeyama T; Tanaka M; Hatakeyama H
    Acta Biomater; 2010 Jun; 6(6):2077-82. PubMed ID: 20005309
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluorine-containing bio-inert polymers: Roles of intermediate water.
    Koguchi R; Jankova K; Tanaka M
    Acta Biomater; 2022 Jan; 138():34-56. PubMed ID: 34700043
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis and Hydration Behavior of a Hydrolysis-Resistant Quasi-Choline Phosphate Zwitterionic Polymer.
    Mukai M; Ihara D; Chu CW; Cheng CH; Takahara A
    Biomacromolecules; 2020 Jun; 21(6):2125-2131. PubMed ID: 32315168
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photoreactive Polymers Bearing a Zwitterionic Phosphorylcholine Group for Surface Modification of Biomaterials.
    Lin X; Fukazawa K; Ishihara K
    ACS Appl Mater Interfaces; 2015 Aug; 7(31):17489-98. PubMed ID: 26202385
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relationship between water structure and properties of poly(methyl methacrylate-b-2-hydroxyethyl methacrylate) by solid-state NMR.
    Mochizuki A; Miwa Y; Miyoshi R; Namiki T
    J Biomater Sci Polym Ed; 2017; 28(10-12):1199-1214. PubMed ID: 28325108
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of the hydration of nonfouling material poly(sulfobetaine methacrylate) by low-field nuclear magnetic resonance.
    Wu J; Lin W; Wang Z; Chen S; Chang Y
    Langmuir; 2012 May; 28(19):7436-41. PubMed ID: 22512533
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Water-soluble polymers bearing phosphorylcholine group and other zwitterionic groups for carrying DNA derivatives.
    Lin X; Ishihara K
    J Biomater Sci Polym Ed; 2014; 25(14-15):1461-78. PubMed ID: 25010135
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation of a thick polymer brush layer composed of poly(2-methacryloyloxyethyl phosphorylcholine) by surface-initiated atom transfer radical polymerization and analysis of protein adsorption resistance.
    Inoue Y; Onodera Y; Ishihara K
    Colloids Surf B Biointerfaces; 2016 May; 141():507-512. PubMed ID: 26896657
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biocompatibility and drug release behavior of spontaneously formed phospholipid polymer hydrogels.
    Kimura M; Takai M; Ishihara K
    J Biomed Mater Res A; 2007 Jan; 80(1):45-54. PubMed ID: 16958047
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydration structure of poly(2-methoxyethyl acrylate): comparison with a 2-methoxyethyl acetate model monomer.
    Morita S; Tanaka M; Kitagawa K; Ozaki Y
    J Biomater Sci Polym Ed; 2010; 21(14):1925-35. PubMed ID: 20566058
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intermolecular Interaction of Polymer Brushes Containing Phosphorylcholine and Inverse-Phosphorylcholine.
    Mihara S; Yamaguchi K; Kobayashi M
    Langmuir; 2019 Feb; 35(5):1172-1180. PubMed ID: 30056718
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioinspired Polydopamine/Polyzwitterion Coatings for Underwater Anti-Oil and -Freezing Surfaces.
    Ma MQ; Zhang C; Chen TT; Yang J; Wang JJ; Ji J; Xu ZK
    Langmuir; 2019 Feb; 35(5):1895-1901. PubMed ID: 30145900
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Why do phospholipid polymers reduce protein adsorption?
    Ishihara K; Nomura H; Mihara T; Kurita K; Iwasaki Y; Nakabayashi N
    J Biomed Mater Res; 1998 Feb; 39(2):323-30. PubMed ID: 9457564
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.