BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 35736722)

  • 1. Effects of Climate on Douglas-fir (
    Levanič T; Štraus H
    Plants (Basel); 2022 Jun; 11(12):. PubMed ID: 35736722
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Silver fir and Douglas fir are more tolerant to extreme droughts than Norway spruce in south-western Germany.
    Vitali V; Büntgen U; Bauhus J
    Glob Chang Biol; 2017 Dec; 23(12):5108-5119. PubMed ID: 28556403
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Forest stand productivity derived from site conditions: an assessment of old Douglas-fir stands (
    Eckhart T; Pötzelsberger E; Koeck R; Thom D; Lair GJ; van Loo M; Hasenauer H
    Ann For Sci; 2019; 76(1):19. PubMed ID: 30881192
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Introduction of non-native Douglas fir reduces leaf damage on beech saplings and mature trees in European beech forests.
    Matevski D; Foltran E; Lamersdorf N; Schuldt A
    Ecol Appl; 2023 Mar; 33(2):e2786. PubMed ID: 36477972
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conifers and non-native tree species shift trophic niches of generalist arthropod predators in Central European beech forests.
    Wildermuth B; Fardiansah R; Matevski D; Lu JZ; Kriegel P; Scheu S; Schuldt A
    BMC Ecol Evol; 2023 Feb; 23(1):3. PubMed ID: 36737705
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Water status dynamics and drought tolerance of juvenile European beech, Douglas fir and Norway spruce trees as dependent on neighborhood and nitrogen supply.
    Paligi SS; Lichter J; Kotowska M; Schwutke RL; Audisio M; Mrak K; Penanhoat A; Schuldt B; Hertel D; Leuschner C
    Tree Physiol; 2024 May; 44(5):. PubMed ID: 38662576
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Large variation in branch and branch-tip hydraulic functional traits in Douglas-fir (Pseudotsuga menziesii) approaching lower treeline.
    Condo TK; Reinhardt K
    Tree Physiol; 2019 Aug; 39(8):1461-1472. PubMed ID: 31135912
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tree-growth analyses to estimate tree species' drought tolerance.
    Eilmann B; Rigling A
    Tree Physiol; 2012 Feb; 32(2):178-87. PubMed ID: 22363071
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Later growth onsets or reduced growth rates: What characterises legacy effects at the tree-ring level in conifers after the severe 2018 drought?
    Miller TW; Stangler DF; Larysch E; Honer H; Puhlmann H; Schindler D; Jung C; Seifert T; Rigling A; Kahle HP
    Sci Total Environ; 2023 Jan; 854():158703. PubMed ID: 36099953
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Water availability as dominant control of heat stress responses in two contrasting tree species.
    Ruehr NK; Gast A; Weber C; Daub B; Arneth A
    Tree Physiol; 2016 Feb; 36(2):164-78. PubMed ID: 26491055
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Seasonal patterns of bole water content in old growth Douglas-fir (
    Beedlow PA; Waschmann RS; Lee EH; Tingey DT
    Agric For Meteorol; 2017 Aug; 242():109-119. PubMed ID: 30008496
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A catalogue of putative unique transcripts from Douglas-fir (Pseudotsuga menziesii) based on 454 transcriptome sequencing of genetically diverse, drought stressed seedlings.
    Müller T; Ensminger I; Schmid KJ
    BMC Genomics; 2012 Nov; 13():673. PubMed ID: 23190494
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Root growth and water use efficiency of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) and lodgepole pine (Pinus contorta Dougl.) seedlings.
    Smit J; Van Den Driessche R
    Tree Physiol; 1992 Dec; 11(4):401-10. PubMed ID: 14969945
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physiological responses of Douglas-fir to climate and forest disturbances as detected by cellulosic carbon and oxygen isotope ratios.
    Lee EH; Beedlow PA; Brooks JR; Tingey DT; Wickham C; Rugh W
    Tree Physiol; 2022 Jan; 42(1):5-25. PubMed ID: 34528693
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Native root xylem embolism and stomatal closure in stands of Douglas-fir and ponderosa pine: mitigation by hydraulic redistribution.
    Domec JC; Warren JM; Meinzer FC; Brooks JR; Coulombe R
    Oecologia; 2004 Sep; 141(1):7-16. PubMed ID: 15338263
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Variation in water potential, hydraulic characteristics and water source use in montane Douglas-fir and lodgepole pine trees in southwestern Alberta and consequences for seasonal changes in photosynthetic capacity.
    Andrews SF; Flanagan LB; Sharp EJ; Cai T
    Tree Physiol; 2012 Feb; 32(2):146-60. PubMed ID: 22318220
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Freezing tolerance of conifer seeds and germinants.
    Hawkins BJ; Guest HJ; Kolotelo D
    Tree Physiol; 2003 Dec; 23(18):1237-46. PubMed ID: 14652223
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bimodal cambial activity and false-ring formation in conifers under a monsoon climate.
    Morino K; Minor RL; Barron-Gafford GA; Brown PM; Hughes MK
    Tree Physiol; 2021 Oct; 41(10):1893-1905. PubMed ID: 33823053
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Douglas-fir seedlings exhibit metabolic responses to increased temperature and atmospheric drought.
    Jansen K; Du B; Kayler Z; Siegwolf R; Ensminger I; Rennenberg H; Kammerer B; Jaeger C; Schaub M; Kreuzwieser J; Gessler A
    PLoS One; 2014; 9(12):e114165. PubMed ID: 25436455
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increased water deficit decreases Douglas fir growth throughout western US forests.
    Restaino CM; Peterson DL; Littell J
    Proc Natl Acad Sci U S A; 2016 Aug; 113(34):9557-62. PubMed ID: 27503880
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.