These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
480 related articles for article (PubMed ID: 35736733)
1. Breeding of Vegetable Cowpea for Nutrition and Climate Resilience in Sub-Saharan Africa: Progress, Opportunities, and Challenges. Mekonnen TW; Gerrano AS; Mbuma NW; Labuschagne MT Plants (Basel); 2022 Jun; 11(12):. PubMed ID: 35736733 [TBL] [Abstract][Full Text] [Related]
2. An Integrated Approach for Biofortification of Carotenoids in Cowpea for Human Nutrition and Health. Sodedji KAF; Assogbadjo AE; Lee B; Kim HY Plants (Basel); 2024 Jan; 13(3):. PubMed ID: 38337945 [TBL] [Abstract][Full Text] [Related]
3. Realizing visionary goals for the International Year of Millet (IYoM): accelerating interventions through advances in molecular breeding and multiomics resources. Chandra T; Jaiswal S; Tomar RS; Iquebal MA; Kumar D Planta; 2024 Sep; 260(4):103. PubMed ID: 39304579 [TBL] [Abstract][Full Text] [Related]
4. Constraints and Prospects of Improving Cowpea Productivity to Ensure Food, Nutritional Security and Environmental Sustainability. Omomowo OI; Babalola OO Front Plant Sci; 2021; 12():751731. PubMed ID: 34745184 [TBL] [Abstract][Full Text] [Related]
5. Pearl Millet: A Climate-Resilient Nutricereal for Mitigating Hidden Hunger and Provide Nutritional Security. Satyavathi CT; Ambawat S; Khandelwal V; Srivastava RK Front Plant Sci; 2021; 12():659938. PubMed ID: 34589092 [TBL] [Abstract][Full Text] [Related]
6. Genome resources for climate-resilient cowpea, an essential crop for food security. Muñoz-Amatriaín M; Mirebrahim H; Xu P; Wanamaker SI; Luo M; Alhakami H; Alpert M; Atokple I; Batieno BJ; Boukar O; Bozdag S; Cisse N; Drabo I; Ehlers JD; Farmer A; Fatokun C; Gu YQ; Guo YN; Huynh BL; Jackson SA; Kusi F; Lawley CT; Lucas MR; Ma Y; Timko MP; Wu J; You F; Barkley NA; Roberts PA; Lonardi S; Close TJ Plant J; 2017 Mar; 89(5):1042-1054. PubMed ID: 27775877 [TBL] [Abstract][Full Text] [Related]
7. Cowpea speed breeding using regulated growth chamber conditions and seeds of oven-dried immature pods potentially accommodates eight generations per year. Edet OU; Ishii T Plant Methods; 2022 Aug; 18(1):106. PubMed ID: 36031612 [TBL] [Abstract][Full Text] [Related]
9. Analysis of Genetic Diversity and Population Structure of Cowpea ( Gumede MT; Gerrano AS; Amelework AB; Modi AT Plants (Basel); 2022 Dec; 11(24):. PubMed ID: 36559592 [TBL] [Abstract][Full Text] [Related]
10. A review of the contribution of cowpea leaves to food and nutrition security in East Africa. Owade JO; Abong' G; Okoth M; Mwang'ombe AW Food Sci Nutr; 2020 Jan; 8(1):36-47. PubMed ID: 31993130 [TBL] [Abstract][Full Text] [Related]
11. The Potential Role of Neglected and Underutilised Crop Species as Future Crops under Water Scarce Conditions in Sub-Saharan Africa. Chivenge P; Mabhaudhi T; Modi AT; Mafongoya P Int J Environ Res Public Health; 2015 May; 12(6):5685-711. PubMed ID: 26016431 [TBL] [Abstract][Full Text] [Related]
12. Climate and conflict-induced child nutrition crisis in Sub-Saharan Africa. Otorkpa OJ; Yusuf AM; Aborode AT Confl Health; 2024 Oct; 18(1):59. PubMed ID: 39367467 [TBL] [Abstract][Full Text] [Related]
13. Reversing Years for Global Food Security: A Review of the Food Security Situation in Sub-Saharan Africa (SSA). Wudil AH; Usman M; Rosak-Szyrocka J; Pilař L; Boye M Int J Environ Res Public Health; 2022 Nov; 19(22):. PubMed ID: 36429555 [TBL] [Abstract][Full Text] [Related]
14. Genomic Tools in Cowpea Breeding Programs: Status and Perspectives. Boukar O; Fatokun CA; Huynh BL; Roberts PA; Close TJ Front Plant Sci; 2016; 7():757. PubMed ID: 27375632 [TBL] [Abstract][Full Text] [Related]
15. Sorghum mitigates climate variability and change on crop yield and quality. Chadalavada K; Kumari BDR; Kumar TS Planta; 2021 Apr; 253(5):113. PubMed ID: 33928417 [TBL] [Abstract][Full Text] [Related]
16. The Exploitation of Orphan Legumes for Food, Income, and Nutrition Security in Sub-Saharan Africa. Popoola JO; Aworunse OS; Ojuederie OB; Adewale BD; Ajani OC; Oyatomi OA; Eruemulor DI; Adegboyega TT; Obembe OO Front Plant Sci; 2022; 13():782140. PubMed ID: 35665143 [TBL] [Abstract][Full Text] [Related]
17. Indian Wheat Genomics Initiative for Harnessing the Potential of Wheat Germplasm Resources for Breeding Disease-Resistant, Nutrient-Dense, and Climate-Resilient Cultivars. Kumar S; Jacob SR; Mir RR; Vikas VK; Kulwal P; Chandra T; Kaur S; Kumar U; Kumar S; Sharma S; Singh R; Prasad S; Singh AM; Singh AK; Kumari J; Saharan MS; Bhardwaj SC; Prasad M; Kalia S; Singh K Front Genet; 2022; 13():834366. PubMed ID: 35846116 [TBL] [Abstract][Full Text] [Related]
18. Mashamaite CV; Manyevere A; Chakauya E Front Plant Sci; 2022; 13():1003080. PubMed ID: 36212376 [TBL] [Abstract][Full Text] [Related]
19. QTLian breeding for climate resilience in cereals: progress and prospects. Choudhary M; Wani SH; Kumar P; Bagaria PK; Rakshit S; Roorkiwal M; Varshney RK Funct Integr Genomics; 2019 Sep; 19(5):685-701. PubMed ID: 31093800 [TBL] [Abstract][Full Text] [Related]
20. Nexus on climate change: agriculture and possible solution to cope future climate change stresses. Shahzad A; Ullah S; Dar AA; Sardar MF; Mehmood T; Tufail MA; Shakoor A; Haris M Environ Sci Pollut Res Int; 2021 Mar; 28(12):14211-14232. PubMed ID: 33515149 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]