These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 35736940)
1. Significant Mobility of Novel Heteroaggregates of Montmorillonite Microparticles with Nanoscale Zerovalent Irons in Saturated Porous Media. Shen C; Teng J; Zheng W; Liu D; Ma K Toxics; 2022 Jun; 10(6):. PubMed ID: 35736940 [TBL] [Abstract][Full Text] [Related]
2. Removal of hexavalent chromium from aqueous solution by fabricating novel heteroaggregates of montmorillonite microparticles with nanoscale zero-valent iron. Yin Y; Shen C; Bi X; Li T Sci Rep; 2020 Jul; 10(1):12137. PubMed ID: 32699387 [TBL] [Abstract][Full Text] [Related]
3. Heteroaggregation of microparticles with nanoparticles changes the chemical reversibility of the microparticles' attachment to planar surfaces. Shen C; Wu L; Zhang S; Ye H; Li B; Huang Y J Colloid Interface Sci; 2014 May; 421():103-13. PubMed ID: 24594038 [TBL] [Abstract][Full Text] [Related]
4. Detachment of fullerene nC60 nanoparticles in saturated porous media under flow/stop-flow conditions: Column experiments and mechanistic explanations. Wang Z; Wang D; Li B; Wang J; Li T; Zhang M; Huang Y; Shen C Environ Pollut; 2016 Jun; 213():698-709. PubMed ID: 27023279 [TBL] [Abstract][Full Text] [Related]
5. Rhamnolipid biosurfactant and soy protein act as effective stabilizers in the aggregation and transport of palladium-doped zerovalent iron nanoparticles in saturated porous media. Basnet M; Ghoshal S; Tufenkji N Environ Sci Technol; 2013; 47(23):13355-64. PubMed ID: 24237158 [TBL] [Abstract][Full Text] [Related]
6. Cotransport of bismerthiazol and montmorillonite colloids in saturated porous media. Shen C; Wang H; Lazouskaya V; Du Y; Lu W; Wu J; Zhang H; Huang Y J Contam Hydrol; 2015; 177-178():18-29. PubMed ID: 25805364 [TBL] [Abstract][Full Text] [Related]
7. The evolution of stable nanohybrids to complex heteroaggregates between nZVI and soil nanoparticles: The influence of ionic strength and soil components. Wu W; Chen X; Han L; Yang L; Gu M; Li J; Chen M J Hazard Mater; 2022 Aug; 436():129155. PubMed ID: 35596993 [TBL] [Abstract][Full Text] [Related]
8. Comparison of the transport of the aggregates of nanoscale zerovalent iron under vertical and horizontal flow. Li J; Ghoshal S Chemosphere; 2016 Feb; 144():1398-407. PubMed ID: 26498094 [TBL] [Abstract][Full Text] [Related]
9. Groundwater Chemistry Has a Greater Influence on the Mobility of Nanoparticles Used for Remediation than the Chemical Heterogeneity of Aquifer Media. Micić V; Bossa N; Schmid D; Wiesner MR; Hofmann T Environ Sci Technol; 2020 Jan; 54(2):1250-1257. PubMed ID: 31860289 [TBL] [Abstract][Full Text] [Related]
10. Empirical correlations to estimate agglomerate size and deposition during injection of a polyelectrolyte-modified Fe0 nanoparticle at high particle concentration in saturated sand. Phenrat T; Kim HJ; Fagerlund F; Illangasekare T; Lowry GV J Contam Hydrol; 2010 Nov; 118(3-4):152-64. PubMed ID: 20926157 [TBL] [Abstract][Full Text] [Related]
11. Humic acid induced weak attachment of fullerene nC Wang Z; Li T; Shen C; Shang J; Shi K; Zhang Y; Li B J Contam Hydrol; 2020 May; 231():103630. PubMed ID: 32169749 [TBL] [Abstract][Full Text] [Related]
12. Influence of Biochar on Deposition and Release of Clay Colloids in Saturated Porous Media. Haque ME; Shen C; Li T; Chu H; Wang H; Li Z; Huang Y J Environ Qual; 2017 Nov; 46(6):1480-1488. PubMed ID: 29293838 [TBL] [Abstract][Full Text] [Related]
13. Overlooked encounter process that affects physical behaviors of stabilized nanoscale zero-valent iron during in situ groundwater remediation. Xie Y; Zhang M; Ma L; Du T; Zhou D; Fu ML; Yuan B; Li XY; Hu YB J Hazard Mater; 2024 Jan; 461():132547. PubMed ID: 37717448 [TBL] [Abstract][Full Text] [Related]
14. Effect of nZVI/biochar nanocomposites on Cd transport in clay mineral-coated quartz sand: Facilitation and rerelease. Zhou S; Ni X; Zhou H; Meng X; Sun H; Wang J; Yin X Ecotoxicol Environ Saf; 2021 Nov; 228():112971. PubMed ID: 34775343 [TBL] [Abstract][Full Text] [Related]
15. Ionic strength and composition affect the mobility of surface-modified Fe0 nanoparticles in water-saturated sand columns. Saleh N; Kim HJ; Phenrat T; Matyjaszewski K; Tilton RD; Lowry GV Environ Sci Technol; 2008 May; 42(9):3349-55. PubMed ID: 18522117 [TBL] [Abstract][Full Text] [Related]
16. Polymer Coatings Affect Transport and Remobilization of Colloidal Activated Carbon in Saturated Sand Columns: Implications for In Situ Groundwater Remediation. Guan X; Kong L; Liu C; Fan D; Anger B; Johnson WP; Lowry GV; Li G; Danko A; Liu X Environ Sci Technol; 2024 May; 58(19):8531-8541. PubMed ID: 38690765 [TBL] [Abstract][Full Text] [Related]
17. Influence of permeability on nanoscale zero-valent iron particle transport in saturated homogeneous and heterogeneous porous media. Strutz TJ; Hornbruch G; Dahmke A; Köber R Environ Sci Pollut Res Int; 2016 Sep; 23(17):17200-9. PubMed ID: 27215990 [TBL] [Abstract][Full Text] [Related]
18. Transport characteristics of nanoscale zero-valent iron carried by three different "vehicles" in porous media. Su Y; Zhao YS; Li LL; Qin CY; Wu F; Geng NN; Lei JS J Environ Sci Health A Tox Hazard Subst Environ Eng; 2014; 49(14):1639-52. PubMed ID: 25320851 [TBL] [Abstract][Full Text] [Related]
19. Straining of polyelectrolyte-stabilized nanoscale zero valent iron particles during transport through granular porous media. Raychoudhury T; Tufenkji N; Ghoshal S Water Res; 2014 Mar; 50():80-9. PubMed ID: 24361705 [TBL] [Abstract][Full Text] [Related]
20. Observed equilibrium partition and second-order kinetic interaction of quantum dot nanoparticles in saturated porous media. Shen C; Haque ME; Wang D; Zheng W; Yin Y; Huang Y J Contam Hydrol; 2021 Jun; 240():103799. PubMed ID: 33799018 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]