These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 35736940)

  • 21. Adsorbed poly(aspartate) coating limits the adverse effects of dissolved groundwater solutes on Fe
    Phenrat T; Schoenfelder D; Kirschling TL; Tilton RD; Lowry GV
    Environ Sci Pollut Res Int; 2018 Mar; 25(8):7157-7169. PubMed ID: 26233743
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Exploring the Impact of Surface Functionalization on the Reaction, Magnetophoretic, and Collective Transport Behavior of Nanoscale Zerovalent Iron.
    Ng WM; Chong WH; Abdullah AZ; Lim J
    Langmuir; 2023 Dec; 39(48):17270-17285. PubMed ID: 37976676
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reciprocal interference of clay minerals and nanoparticulate zero-valent iron on their interfacial interaction with dissolved organic matter.
    Wang Y; Liu Y; Yang K; Lin D
    Sci Total Environ; 2020 Oct; 739():140372. PubMed ID: 32758974
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Extracellular polymeric substances induced cell-surface interactions facilitate bacteria transport in saturated porous media.
    Du M; Wang L; Ebrahimi A; Chen G; Shu S; Zhu K; Shen C; Li B; Wang G
    Ecotoxicol Environ Saf; 2021 May; 218():112291. PubMed ID: 33957420
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transport and retention of TiO2 rutile nanoparticles in saturated porous media under low-ionic-strength conditions: measurements and mechanisms.
    Chen G; Liu X; Su C
    Langmuir; 2011 May; 27(9):5393-402. PubMed ID: 21446737
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparison of the colloidal stability, mobility, and performance of nanoscale zerovalent iron and sulfidated derivatives.
    Su Y; Jassby D; Zhang Y; Keller AA; Adeleye AS
    J Hazard Mater; 2020 Sep; 396():122691. PubMed ID: 32353727
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Influence of surface heterogeneities on reversibility of fullerene (nC60) nanoparticle attachment in saturated porous media.
    Shen C; Zhang M; Zhang S; Wang Z; Zhang H; Li B; Huang Y
    J Hazard Mater; 2015 Jun; 290():60-8. PubMed ID: 25746565
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Important Role of Concave Surfaces in Deposition of Colloids under Favorable Conditions as Revealed by Microscale Visualization.
    Li T; Shen C; Johnson WP; Ma H; Jin C; Zhang C; Chu X; Ma K; Xing B
    Environ Sci Technol; 2022 Apr; 56(7):4121-4131. PubMed ID: 35312300
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of injection velocity and particle concentration on transport of nanoscale zero-valent iron and hydraulic conductivity in saturated porous media.
    Strutz TJ; Hornbruch G; Dahmke A; Köber R
    J Contam Hydrol; 2016 Aug; 191():54-65. PubMed ID: 27244572
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fecal indicator bacteria transport and deposition in saturated and unsaturated porous media.
    Chen G; Walker SL
    Environ Sci Technol; 2012 Aug; 46(16):8782-90. PubMed ID: 22809290
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Aggregation and transport of rutile titanium dioxide nanoparticles with montmorillonite and diatomite in the presence of phosphate in porous sand.
    Guo P; Xu N; Li D; Huangfu X; Li Z
    Chemosphere; 2018 Aug; 204():327-334. PubMed ID: 29674144
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Carbonate minerals in porous media decrease mobility of polyacrylic acid modified zero-valent iron nanoparticles used for groundwater remediation.
    Laumann S; Micić V; Lowry GV; Hofmann T
    Environ Pollut; 2013 Aug; 179():53-60. PubMed ID: 23644276
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mobility of Cellulose Nanocrystals in Porous Media: Effects of Ionic Strength, Iron Oxides, and Soil Colloids.
    Xu S; Shen C; Zhang X; Chen X; Radosevich M; Wang S; Zhuang J
    Nanomaterials (Basel); 2020 Feb; 10(2):. PubMed ID: 32085453
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Experimental measurements and numerical simulations of the transport and retention of nanocrystal CdSe/ZnS quantum dots in saturated porous media: effects of pH, organic ligand, and natural organic matter.
    Li C; Hassan A; Palmai M; Xie Y; Snee PT; Powell BA; Murdoch LC; Darnault CJG
    Environ Sci Pollut Res Int; 2021 Feb; 28(7):8050-8073. PubMed ID: 33051847
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modification, characterization and investigations of key factors controlling the transport of modified nano zero-valent iron (nZVI) in porous media.
    Saha AK; Sinha A; Pasupuleti S
    Environ Technol; 2019 May; 40(12):1543-1556. PubMed ID: 29319455
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transport of sucrose-modified nanoscale zero-valent iron in saturated porous media: role of media size, injection rate and input concentration.
    Li H; Zhao YS; Han ZT; Hong M
    Water Sci Technol; 2015; 72(9):1463-71. PubMed ID: 26524436
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Magnetic characterization and interaction modeling of zerovalent iron nanoparticles for the remediation of contaminated aquifers.
    Dalla Vecchia E; Coisson M; Appino C; Vinai F; Sethi R
    J Nanosci Nanotechnol; 2009 May; 9(5):3210-8. PubMed ID: 19452993
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Natural organic matter enhanced mobility of nano zerovalent iron.
    Johnson RL; Johnson GO; Nurmi JT; Tratnyek PG
    Environ Sci Technol; 2009 Jul; 43(14):5455-60. PubMed ID: 19708381
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enhanced transport of Si-coated nanoscale zero-valent iron particles in porous media.
    HonetschlÄgerová L; Janouškovcová P; Kubal M
    Environ Technol; 2016; 37(12):1530-8. PubMed ID: 26582314
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reduced transport potential of a palladium-doped zero valent iron nanoparticle in a water saturated loamy sand.
    Basnet M; Di Tommaso C; Ghoshal S; Tufenkji N
    Water Res; 2015 Jan; 68():354-63. PubMed ID: 25462742
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.