These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 35736953)

  • 1. A 3-D virtual human model for simulating heat and cold stress.
    Gulati T; Hatwar R; Unnikrishnan G; Rubio JE; Reifman J
    J Appl Physiol (1985); 2022 Aug; 133(2):288-310. PubMed ID: 35736953
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A 3-D virtual human thermoregulatory model to predict whole-body and organ-specific heat-stress responses.
    Unnikrishnan G; Hatwar R; Hornby S; Laxminarayan S; Gulati T; Belval LN; Giersch GEW; Kazman JB; Casa DJ; Reifman J
    Eur J Appl Physiol; 2021 Sep; 121(9):2543-2562. PubMed ID: 34089370
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermoregulatory disorders and illness related to heat and cold stress.
    Cheshire WP
    Auton Neurosci; 2016 Apr; 196():91-104. PubMed ID: 26794588
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heat balance precedes stabilization of body temperatures during cold water immersion.
    Tikuisis P
    J Appl Physiol (1985); 2003 Jul; 95(1):89-96. PubMed ID: 12639852
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Erratum: Eyestalk Ablation to Increase Ovarian Maturation in Mud Crabs.
    J Vis Exp; 2023 May; (195):. PubMed ID: 37235796
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A 3-D mathematical model to identify organ-specific risks in rats during thermal stress.
    Rakesh V; Stallings JD; Helwig BG; Leon LR; Jackson DA; Reifman J
    J Appl Physiol (1985); 2013 Dec; 115(12):1822-37. PubMed ID: 24072412
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A vascular mechanism to explain thermally mediated variations in deep-body cooling rates during the immersion of profoundly hyperthermic individuals.
    Caldwell JN; van den Heuvel AMJ; Kerry P; Clark MJ; Peoples GE; Taylor NAS
    Exp Physiol; 2018 Apr; 103(4):512-522. PubMed ID: 29345019
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermal effects of whole head submersion in cold water on nonshivering humans.
    Pretorius T; Bristow GK; Steinman AM; Giesbrecht GG
    J Appl Physiol (1985); 2006 Aug; 101(2):669-75. PubMed ID: 16614357
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of two cold thermoregulatory models for prediction of core temperature during exercise in cold water.
    Castellani JW; O'Brien C; Tikuisis P; Sils IV; Xu X
    J Appl Physiol (1985); 2007 Dec; 103(6):2034-41. PubMed ID: 17885026
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A virtual rat for simulating environmental and exertional heat stress.
    Rakesh V; Stallings JD; Reifman J
    J Appl Physiol (1985); 2014 Dec; 117(11):1278-86. PubMed ID: 25277741
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interleukin-6 responses to water immersion therapy after acute exercise heat stress: a pilot investigation.
    Lee EC; Watson G; Casa D; Armstrong LE; Kraemer W; Vingren JL; Spiering BA; Maresh CM
    J Athl Train; 2012; 47(6):655-63. PubMed ID: 23182014
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hypoxia gradually augments metabolic and thermoperceptual responsiveness to repeated whole-body cold stress in humans.
    Keramidas ME; Kölegård R; Eiken O
    Exp Physiol; 2020 Dec; 105(12):2123-2140. PubMed ID: 33140429
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling thermoregulatory responses during high-intensity exercise in warm environments.
    Xu X; Rioux TP; Welles AP; Jay O; Ely BR; Charkoudian N
    J Appl Physiol (1985); 2024 Apr; 136(4):908-916. PubMed ID: 38385185
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of dynamic exercise on resting cold thermoregulatory responses measured during water immersion.
    Kenny GP; Denis PM; Proulx CE; Giesbrecht GG
    Eur J Appl Physiol Occup Physiol; 1999 May; 79(6):495-9. PubMed ID: 10344458
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermoregulation during cold exposure: effects of prior exercise.
    Castellani JW; Young AJ; Kain JE; Rouse A; Sawka MN
    J Appl Physiol (1985); 1999 Jul; 87(1):247-52. PubMed ID: 10409582
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hypothermia following cold-water immersion treatment for exertional heat illness.
    Stone GL; Sanchez LD
    Res Sports Med; 2023; 31(3):255-259. PubMed ID: 34383570
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of Thermoregulatory Models to Evaluate Heat Stress in Industrial Environments.
    Yermakova II; Potter AW; Raimundo AM; Xu X; Hancock JW; Oliveira AVM
    Int J Environ Res Public Health; 2022 Jun; 19(13):. PubMed ID: 35805626
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aural canal, esophageal, and rectal temperatures during exertional heat stress and the subsequent recovery period.
    Gagnon D; Lemire BB; Jay O; Kenny GP
    J Athl Train; 2010; 45(2):157-63. PubMed ID: 20210619
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nitrous oxide consistently attenuates thermogenic and thermoperceptual responses to repetitive cold stress in humans.
    Moes MI; Elia A; Gennser M; Eiken O; Keramidas ME
    J Appl Physiol (1985); 2023 Sep; 135(3):631-641. PubMed ID: 37471214
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of human thermoregulatory mechanisms using 2-D computational model.
    Ahmed SG; S R S
    J Therm Biol; 2022 Dec; 110():103388. PubMed ID: 36462850
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.