These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 35737068)
21. A multidisciplinary approach to evaluate the efficiency of a clean-up technology to remove mercury from water. Lopes CB; Lopes I; Rocha LS; Duarte AC; Soares AM; Rocha J; Pereira E Bull Environ Contam Toxicol; 2014 Aug; 93(2):138-43. PubMed ID: 24723243 [TBL] [Abstract][Full Text] [Related]
22. Assessment of sediment ecotoxicological status as a complementary tool for the evaluation of surface water quality: the Ebro river basin case study. Roig N; Sierra J; Nadal M; Moreno-Garrido I; Nieto E; Hampel M; Gallego EP; Schuhmacher M; Blasco J Sci Total Environ; 2015 Jan; 503-504():269-78. PubMed ID: 25046984 [TBL] [Abstract][Full Text] [Related]
23. Evaluation of surface water quality using an ecotoxicological approach: a case study of the Alqueva Reservoir (Portugal). Palma P; Alvarenga P; Palma V; Matos C; Fernandes RM; Soares A; Barbosa IR Environ Sci Pollut Res Int; 2010 Mar; 17(3):703-16. PubMed ID: 19396484 [TBL] [Abstract][Full Text] [Related]
24. Toxicity of emerging antifouling biocides to non-target freshwater organisms from three trophic levels. Oliveira IB; Groh KJ; Schönenberger R; Barroso C; Thomas KV; Suter MJ Aquat Toxicol; 2017 Oct; 191():164-174. PubMed ID: 28843204 [TBL] [Abstract][Full Text] [Related]
25. Comparing in vivo data and in silico predictions for acute effects assessment of biocidal active substances and metabolites for aquatic organisms. Blázquez M; Andreu-Sánchez O; Ranero I; Fernández-Cruz ML; Benfenati E Ecotoxicol Environ Saf; 2020 Dec; 205():111291. PubMed ID: 32956865 [TBL] [Abstract][Full Text] [Related]
26. Lethal and sub lethal effects of the biocide chlorhexidine on aquatic organisms. Jesus FT; Oliveira R; Silva A; Catarino AL; Soares AM; Nogueira AJ; Domingues I Ecotoxicology; 2013 Nov; 22(9):1348-58. PubMed ID: 24026526 [TBL] [Abstract][Full Text] [Related]
27. Acute toxicity of selected organic pollutants to saltwater (mysid Siriella armata) and freshwater (cladoceran Daphnia magna) ecotoxicological models. Pérez S; Rial D; Beiras R Ecotoxicology; 2015 Aug; 24(6):1229-38. PubMed ID: 26003834 [TBL] [Abstract][Full Text] [Related]
28. Ibuprofen removal by heterogeneous photocatalysis and ecotoxicological evaluation of the treated solutions. Candido JP; Andrade SJ; Fonseca AL; Silva FS; Silva MR; Kondo MM Environ Sci Pollut Res Int; 2016 Oct; 23(19):19911-20. PubMed ID: 27424204 [TBL] [Abstract][Full Text] [Related]
29. Aquatic ecotoxicity effect of engineered aminoclay nanoparticles. Choi MH; Hwang Y; Lee HU; Kim B; Lee GW; Oh YK; Andersen HR; Lee YC; Huh YS Ecotoxicol Environ Saf; 2014 Apr; 102():34-41. PubMed ID: 24580819 [TBL] [Abstract][Full Text] [Related]
30. In Vitro and In Vivo Toxicity Evaluation of Natural Products with Potential Applications as Biopesticides. Sangermano F; Masi M; Kumar A; Peravali R; Tuzi A; Cimmino A; Vallone D; Giamundo G; Conte I; Evidente A; Calabrò V Toxins (Basel); 2021 Nov; 13(11):. PubMed ID: 34822589 [TBL] [Abstract][Full Text] [Related]
31. Effects of symbiotic bacteria on chemical sensitivity of Daphnia magna. Manakul P; Peerakietkhajorn S; Matsuura T; Kato Y; Watanabe H Mar Environ Res; 2017 Jul; 128():70-75. PubMed ID: 28292585 [TBL] [Abstract][Full Text] [Related]
32. Natural molecule coatings modify the fate of cerium dioxide nanoparticles in water and their ecotoxicity to Daphnia magna. Villa S; Maggioni D; Hamza H; Di Nica V; Magni S; Morosetti B; Parenti CC; Finizio A; Binelli A; Della Torre C Environ Pollut; 2020 Feb; 257():113597. PubMed ID: 31744685 [TBL] [Abstract][Full Text] [Related]
33. A review of the nature, role and control of lithobionts on stone cultural heritage: weighing-up and managing biodeterioration and bioprotection. Favero-Longo SE; Viles HA World J Microbiol Biotechnol; 2020 Jul; 36(7):100. PubMed ID: 32607867 [TBL] [Abstract][Full Text] [Related]
34. Acute and chronic toxicity of Betanal(®)Expert and its active ingredients on nontarget aquatic organisms from different trophic levels. Vidal T; Abrantes N; Gonçalves AM; Gonçalves F Environ Toxicol; 2012 Sep; 27(9):537-48. PubMed ID: 21374783 [TBL] [Abstract][Full Text] [Related]
35. Efficiency of a cleanup technology to remove mercury from natural waters by means of rice husk biowaste: ecotoxicological and chemical approach. Rocha LS; Lopes I; Lopes CB; Henriques B; Soares AM; Duarte AC; Pereira E Environ Sci Pollut Res Int; 2014; 21(13):8146-56. PubMed ID: 24671395 [TBL] [Abstract][Full Text] [Related]
38. Sacrificial photocatalysis: removal of nitrate and hydrogen production by nano-copper-loaded P25 titania. A kinetic and ecotoxicological assessment. Lucchetti R; Siciliano A; Clarizia L; Russo D; Di Somma I; Di Natale F; Guida M; Andreozzi R; Marotta R Environ Sci Pollut Res Int; 2017 Feb; 24(6):5898-5907. PubMed ID: 28064394 [TBL] [Abstract][Full Text] [Related]
39. Assessment of hazardous property HP 14 using ecotoxicological tests: a case study of weathered coal fly ash. Bandarra BS; Gomes LA; Pereira JL; Gonçalves FJM; Martins RC; Quina MJ Environ Sci Pollut Res Int; 2020 Jun; 27(17):20972-20983. PubMed ID: 32253696 [TBL] [Abstract][Full Text] [Related]
40. Evaluation of the toxicity of nickel nanowires to freshwater organisms at concentrations and short-term exposures compatible with their application in water treatment. Nogueira V; Sousa CT; Araujo JP; Pereira R Aquat Toxicol; 2020 Oct; 227():105595. PubMed ID: 32911330 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]