BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 35737244)

  • 1. The Use of Seahorse XF Assays to Interrogate Real-Time Energy Metabolism in Cancer Cell Lines.
    Caines JK; Barnes DA; Berry MD
    Methods Mol Biol; 2022; 2508():225-234. PubMed ID: 35737244
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using Seahorse Machine to Measure OCR and ECAR in Cancer Cells.
    Zhang J; Zhang Q
    Methods Mol Biol; 2019; 1928():353-363. PubMed ID: 30725464
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Real-Time Assessment of Mitochondrial Function in Cytotrophoblast and Syncytialized Trophoblast Cells Using the Seahorse XFe24 Extracellular Flux Analyzer.
    Walker OS; May LL; Raha S
    Methods Mol Biol; 2024; 2728():137-147. PubMed ID: 38019398
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurement of Oxygen Consumption Rate (OCR) and Extracellular Acidification Rate (ECAR) in Culture Cells for Assessment of the Energy Metabolism.
    Plitzko B; Loesgen S
    Bio Protoc; 2018 May; 8(10):e2850. PubMed ID: 34285967
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glycolytic reprogramming in macrophages and MSCs during inflammation.
    Li X; Shen H; Zhang M; Teissier V; Huang EE; Gao Q; Tsubosaka M; Toya M; Kushioka J; Maduka CV; Contag CH; Chow SK; Zhang N; Goodman SB
    Front Immunol; 2023; 14():1199751. PubMed ID: 37675119
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measurements of Mitochondrial Respiration in Intact Cells, Permeabilized Cells, and Isolated Tissue Mitochondria Using the Seahorse XF Analyzer.
    Pfleger J
    Methods Mol Biol; 2022; 2497():185-206. PubMed ID: 35771443
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Real-Time Assessment of Mitochondrial Toxicity in HepG2 Cells Using the Seahorse Extracellular Flux Analyzer.
    Espinosa JA; Pohan G; Arkin MR; Markossian S
    Curr Protoc; 2021 Mar; 1(3):e75. PubMed ID: 33735523
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calculation of ATP production rates using the Seahorse XF Analyzer.
    Desousa BR; Kim KK; Jones AE; Ball AB; Hsieh WY; Swain P; Morrow DH; Brownstein AJ; Ferrick DA; Shirihai OS; Neilson A; Nathanson DA; Rogers GW; Dranka BP; Murphy AN; Affourtit C; Bensinger SJ; Stiles L; Romero N; Divakaruni AS
    EMBO Rep; 2023 Oct; 24(10):e56380. PubMed ID: 37548091
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluating the Efficacy of GLUT Inhibitors Using a Seahorse Extracellular Flux Analyzer.
    Wei C; Heitmeier M; Hruz PW; Shanmugam M
    Methods Mol Biol; 2018; 1713():69-75. PubMed ID: 29218518
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluating the Role of RARβ Signaling on Cellular Metabolism in Melanoma Using the Seahorse XF Analyzer.
    Dahl C; Guldberg P; Abildgaard C
    Methods Mol Biol; 2019; 2019():171-180. PubMed ID: 31359396
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitochondrial Stress Tests Using Seahorse Respirometry on Intact Dictyostelium discoideum Cells.
    Lay S; Sanislav O; Annesley SJ; Fisher PR
    Methods Mol Biol; 2016; 1407():41-61. PubMed ID: 27271893
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Live Metabolic Profile Analysis of Zebrafish Embryos Using a Seahorse XF 24 Extracellular Flux Analyzer.
    Bond ST; McEwen KA; Yoganantharajah P; Gibert Y
    Methods Mol Biol; 2018; 1797():393-401. PubMed ID: 29896705
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In Vitro Analysis of Energy Metabolism in Bone-Marrow Mesenchymal Stromal Cells.
    Bourgeais J; Hérault O
    Methods Mol Biol; 2021; 2308():59-70. PubMed ID: 34057714
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extracellular Flux Assays to Determine Oxidative Phosphorylation and Glycolysis in Chronic Lymphocytic Leukemia Cells.
    Vangapandu HV; Gandhi V
    Methods Mol Biol; 2019; 1881():121-128. PubMed ID: 30350202
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell bioenergetics and ATP production of boar spermatozoa.
    Prieto OB; Algieri C; Spinaci M; Trombetti F; Nesci S; Bucci D
    Theriogenology; 2023 Oct; 210():162-168. PubMed ID: 37517301
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Progesterone Modulates Mitochondrial Functions in Human Glioblastoma Cells.
    Atif F; Yousuf S; Espinosa-Garcia C; Stein DG
    Mol Neurobiol; 2021 Aug; 58(8):3805-3816. PubMed ID: 33847913
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulation of mitochondrial bioenergetics in a skeletal muscle cell line model of mitochondrial toxicity.
    Dott W; Mistry P; Wright J; Cain K; Herbert KE
    Redox Biol; 2014; 2():224-33. PubMed ID: 24494197
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Seahorse Xfe 24 Extracellular Flux Analyzer-Based Analysis of Cellular Respiration in Caenorhabditis elegans.
    Luz AL; Smith LL; Rooney JP; Meyer JN
    Curr Protoc Toxicol; 2015 Nov; 66():25.7.1-25.7.15. PubMed ID: 26523474
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measuring Oxygen Consumption Rate (OCR) and Extracellular Acidification Rate (ECAR) in Muscle Stem Cells Using a Seahorse Analyzer: Applicability for Aging Studies.
    Hong X; Muñoz-Cánoves P
    Methods Mol Biol; 2023; 2640():73-88. PubMed ID: 36995588
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioenergetic characterization of mouse podocytes.
    Abe Y; Sakairi T; Kajiyama H; Shrivastav S; Beeson C; Kopp JB
    Am J Physiol Cell Physiol; 2010 Aug; 299(2):C464-76. PubMed ID: 20445170
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.