BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 35737382)

  • 1. Centrifugal disc liquid reciprocation flow considerations for antibody binding to COVID antigen array during microfluidic integration.
    Hwu AT; Madadelahi M; Nakajima R; Shamloo E; Perebikovsky A; Kido H; Jain A; Jasinskas A; Prange S; Felgner P; Madou M
    Lab Chip; 2022 Jul; 22(14):2695-2706. PubMed ID: 35737382
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrating Bio-Sensing Array with Blood Plasma Separation on a Centrifugal Platform.
    Peshin S; Madou M; Kulinsky L
    Sensors (Basel); 2023 Feb; 23(3):. PubMed ID: 36772748
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidics for COVID-19: From Current Work to Future Perspective.
    Li Q; Zhou X; Wang Q; Liu W; Chen C
    Biosensors (Basel); 2023 Jan; 13(2):. PubMed ID: 36831930
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of Active Centrifugal Pump for Microfluidic CD Platforms.
    Al-Halhouli A; Far BE; Albagdady A; Al-Faqheri W
    Micromachines (Basel); 2020 Jan; 11(2):. PubMed ID: 32012735
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a passive liquid valve (PLV) utilizing a pressure equilibrium phenomenon on the centrifugal microfluidic platform.
    Al-Faqheri W; Ibrahim F; Thio TH; Bahari N; Arof H; Rothan HA; Yusof R; Madou M
    Sensors (Basel); 2015 Feb; 15(3):4658-76. PubMed ID: 25723143
    [TBL] [Abstract][Full Text] [Related]  

  • 6. VEGF Detection via Simplified FLISA Using a 3D Microfluidic Disk Platform.
    Kang DH; Kim NK; Park SW; Kang HW
    Biosensors (Basel); 2021 Aug; 11(8):. PubMed ID: 34436072
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Effect of Moment of Inertia on the Liquids in Centrifugal Microfluidics.
    Pishbin E; Eghbal M; Fakhari S; Kazemzadeh A; Navidbakhsh M
    Micromachines (Basel); 2016 Dec; 7(12):. PubMed ID: 30404391
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Label-free, spatially multiplexed SPR detection of immunoassays on a highly integrated centrifugal Lab-on-a-Disc platform.
    Miyazaki CM; Kinahan DJ; Mishra R; Mangwanya F; Kilcawley N; Ferreira M; Ducrée J
    Biosens Bioelectron; 2018 Nov; 119():86-93. PubMed ID: 30103158
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfluidic platforms for lab-on-a-chip applications.
    Haeberle S; Zengerle R
    Lab Chip; 2007 Sep; 7(9):1094-110. PubMed ID: 17713606
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Materials for Microfluidic Immunoassays: A Review.
    Mou L; Jiang X
    Adv Healthc Mater; 2017 Aug; 6(15):. PubMed ID: 28322517
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cell-sorting centrifugal microfluidic chip with a flow rectifier.
    Ma J; Wu Y; Liu Y; Ji Y; Yang M; Zhu H
    Lab Chip; 2021 Jun; 21(11):2129-2141. PubMed ID: 33928337
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ferrowax microvalves for fully automated serial dilution on centrifugal microfluidic platforms.
    Kim S; Song J; Kim R; Lee NY; Kim MH; Park HG
    Biotechnol J; 2021 Dec; 16(12):e2100131. PubMed ID: 34499815
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An integrated centrifugal microfluidic strategy for point-of-care complete blood counting.
    Khodadadi R; Eghbal M; Ofoghi H; Balaei A; Tamayol A; Abrinia K; Sanati-Nezhad A; Samandari M
    Biosens Bioelectron; 2024 Feb; 245():115789. PubMed ID: 37979545
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of centrifugal microfluidics in immunoassay, biochemical analysis and molecular diagnosis.
    Shi Y; Ye P; Yang K; Meng J; Guo J; Pan Z; Zhao W; Guo J
    Analyst; 2021 Sep; 146(19):5800-5821. PubMed ID: 34570846
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toward one-step point-of-care immunodiagnostics using capillary-driven microfluidics and PDMS substrates.
    Gervais L; Delamarche E
    Lab Chip; 2009 Dec; 9(23):3330-7. PubMed ID: 19904397
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sequential push-pull pumping mechanism for washing and evacuation of an immunoassay reaction chamber on a microfluidic CD platform.
    Thio TH; Ibrahim F; Al-Faqheri W; Soin N; Kahar Bador M; Madou M
    PLoS One; 2015; 10(4):e0121836. PubMed ID: 25853411
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Liquid density effect on burst frequency in centrifugal microfluidic platforms.
    Al-Faqheri W; Ibrahim F; Thio TH; Joseph K; Mohktar MS; Madou M
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():3221-4. PubMed ID: 26736978
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A digital microfluidic approach to heterogeneous immunoassays.
    Miller EM; Ng AH; Uddayasankar U; Wheeler AR
    Anal Bioanal Chem; 2011 Jan; 399(1):337-45. PubMed ID: 21057776
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A multiplexed immunoassay system based upon reciprocating centrifugal microfluidics.
    Noroozi Z; Kido H; Peytavi R; Nakajima-Sasaki R; Jasinskas A; Micic M; Felgner PL; Madou MJ
    Rev Sci Instrum; 2011 Jun; 82(6):064303. PubMed ID: 21721711
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidic "Pouch" Chips for Immunoassays and Nucleic Acid Amplification Tests.
    Mauk MG; Liu C; Qiu X; Chen D; Song J; Bau HH
    Methods Mol Biol; 2017; 1572():467-488. PubMed ID: 28299706
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.