These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 35737643)

  • 1. Multireference Approach to Normal and Resonant Auger Spectra Based on the One-Center Approximation.
    Tenorio BNC; Voß TA; Bokarev SI; Decleva P; Coriani S
    J Chem Theory Comput; 2022 Jul; 18(7):4387-4407. PubMed ID: 35737643
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-reference approach to the computation of double core-hole spectra.
    Tenorio BNC; Decleva P; Coriani S
    J Chem Phys; 2021 Oct; 155(13):131101. PubMed ID: 34624974
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Normal and resonant Auger spectroscopy of isocyanic acid, HNCO.
    Holzmeier F; Wolf TJA; Gienger C; Wagner I; Bozek J; Nandi S; Nicolas C; Fischer I; Gühr M; Fink RF
    J Chem Phys; 2018 Jul; 149(3):034308. PubMed ID: 30037265
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Feshbach-Fano approach for calculation of Auger decay rates using equation-of-motion coupled-cluster wave functions. I. Theory and implementation.
    Skomorowski W; Krylov AI
    J Chem Phys; 2021 Feb; 154(8):084124. PubMed ID: 33639760
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-reference protocol for (auto)ionization spectra: Application to molecules.
    Grell G; Bokarev SI
    J Chem Phys; 2020 Feb; 152(7):074108. PubMed ID: 32087635
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Feshbach-Fano approach for calculation of Auger decay rates using equation-of-motion coupled-cluster wave functions. II. Numerical examples and benchmarks.
    Skomorowski W; Krylov AI
    J Chem Phys; 2021 Feb; 154(8):084125. PubMed ID: 33639736
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Auger electron spectroscopy of fulminic acid, HCNO: an experimental and theoretical study.
    Gerlach M; Preitschopf T; Karaev E; Quitián-Lara HM; Mayer D; Bozek J; Fischer I; Fink RF
    Phys Chem Chem Phys; 2022 Jun; 24(25):15217-15229. PubMed ID: 35703845
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Core spectroscopy of oxazole.
    Schnack-Petersen AK; Tenorio BNC; Coriani S; Decleva P; Troß J; Ramasesha K; Coreno M; Totani R; Röder A
    J Chem Phys; 2022 Dec; 157(21):214305. PubMed ID: 36511550
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular Auger decay rates from complex-variable coupled-cluster theory.
    Matz F; Jagau TC
    J Chem Phys; 2022 Mar; 156(11):114117. PubMed ID: 35317579
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Triple ionization of HCl via states with a 2p core hole.
    Eland JHD; Feifel R
    J Chem Phys; 2019 Sep; 151(11):114301. PubMed ID: 31542004
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Site-dependent Si KL23L23 resonant Auger electron spectra following inner-shell excitation of Cl3SiSi(CH3)3.
    Suzuki IH; Endo H; Nagai K; Takahashi O; Tamenori Y; Nagaoka S
    J Chem Phys; 2013 Nov; 139(17):174314. PubMed ID: 24206305
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Auger decay calculations with core-hole excited-state molecular-dynamics simulations of water.
    Takahashi O; Odelius M; Nordlund D; Nilsson A; Bluhm H; Pettersson LG
    J Chem Phys; 2006 Feb; 124(6):64307. PubMed ID: 16483207
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Angular distribution of Auger electrons from fixed-in-space and rotating C 1s-->2pi photoexcited CO: theory.
    Fink RF; Piancastelli MN; Grum-Grzhimailo AN; Ueda K
    J Chem Phys; 2009 Jan; 130(1):014306. PubMed ID: 19140614
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Auger electron angular distributions following excitation or ionization of the I 3d level in methyl iodide.
    Forbes R; De Fanis A; Bomme C; Rolles D; Pratt ST; Powis I; Besley NA; Nandi S; Milosavljević AR; Nicolas C; Bozek JD; Underwood JG; Holland DMP
    J Chem Phys; 2018 Sep; 149(9):094304. PubMed ID: 30195315
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automatic Active Space Selection for Calculating Electronic Excitation Energies Based on High-Spin Unrestricted Hartree-Fock Orbitals.
    Bao JJ; Truhlar DG
    J Chem Theory Comput; 2019 Oct; 15(10):5308-5318. PubMed ID: 31411880
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Radial correlation effects on interconfigurational excitations at the end of the lanthanide series: a restricted active space second order perturbation study of Yb2+ and SrCl2:Yb2+.
    Barandiarán Z; Seijo L
    J Chem Phys; 2013 Feb; 138(7):074102. PubMed ID: 23444992
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Disentangling the resonant Auger spectra of ozone: overlapping core-hole states and core-excited state dynamics.
    Tenorio BNC; Møller KB; Decleva P; Coriani S
    Phys Chem Chem Phys; 2022 Nov; 24(46):28150-28163. PubMed ID: 36398603
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Auger electron angular distributions following excitation or ionization from the Xe 3d and F 1s levels in xenon difluoride.
    Forbes R; Hockett P; Powis I; Bozek JD; Pratt ST; Holland DMP
    Phys Chem Chem Phys; 2022 Jan; 24(3):1367-1379. PubMed ID: 34951418
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fragmentation of isocyanic acid, HNCO, following core excitation and ionization.
    Gerlach M; Fantuzzi F; Wohlfart L; Kopp K; Engels B; Bozek J; Nicolas C; Mayer D; Gühr M; Holzmeier F; Fischer I
    J Chem Phys; 2021 Mar; 154(11):114302. PubMed ID: 33752348
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analytic gradients for restricted active space second-order perturbation theory (RASPT2).
    Nishimoto Y
    J Chem Phys; 2021 May; 154(19):194103. PubMed ID: 34240887
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.