These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
249 related articles for article (PubMed ID: 35737823)
1. Posttranslational modifications optimize the ability of SARS-CoV-2 spike for effective interaction with host cell receptors. Kapoor K; Chen T; Tajkhorshid E Proc Natl Acad Sci U S A; 2022 Jul; 119(28):e2119761119. PubMed ID: 35737823 [TBL] [Abstract][Full Text] [Related]
2. In situ structural analysis of SARS-CoV-2 spike reveals flexibility mediated by three hinges. Turoňová B; Sikora M; Schürmann C; Hagen WJH; Welsch S; Blanc FEC; von Bülow S; Gecht M; Bagola K; Hörner C; van Zandbergen G; Landry J; de Azevedo NTD; Mosalaganti S; Schwarz A; Covino R; Mühlebach MD; Hummer G; Krijnse Locker J; Beck M Science; 2020 Oct; 370(6513):203-208. PubMed ID: 32817270 [TBL] [Abstract][Full Text] [Related]
3. Structure, Dynamics, Receptor Binding, and Antibody Binding of the Fully Glycosylated Full-Length SARS-CoV-2 Spike Protein in a Viral Membrane. Choi YK; Cao Y; Frank M; Woo H; Park SJ; Yeom MS; Croll TI; Seok C; Im W J Chem Theory Comput; 2021 Apr; 17(4):2479-2487. PubMed ID: 33689337 [TBL] [Abstract][Full Text] [Related]
4. Sterically confined rearrangements of SARS-CoV-2 Spike protein control cell invasion. Dodero-Rojas E; Onuchic JN; Whitford PC Elife; 2021 Aug; 10():. PubMed ID: 34463614 [TBL] [Abstract][Full Text] [Related]
5. SARS-CoV-2 Evolutionary Adaptation toward Host Entry and Recognition of Receptor O-Acetyl Sialylation in Virus-Host Interaction. Kim CH Int J Mol Sci; 2020 Jun; 21(12):. PubMed ID: 32604730 [TBL] [Abstract][Full Text] [Related]
6. Dual nature of human ACE2 glycosylation in binding to SARS-CoV-2 spike. Mehdipour AR; Hummer G Proc Natl Acad Sci U S A; 2021 May; 118(19):. PubMed ID: 33903171 [TBL] [Abstract][Full Text] [Related]
7. Dynamics of SARS-CoV-2 Spike Proteins in Cell Entry: Control Elements in the Amino-Terminal Domains. Qing E; Kicmal T; Kumar B; Hawkins GM; Timm E; Perlman S; Gallagher T mBio; 2021 Aug; 12(4):e0159021. PubMed ID: 34340537 [TBL] [Abstract][Full Text] [Related]
8. O-glycosylation of SARS-CoV-2 spike protein by host O-glycosyltransferase strengthens its trimeric structure. Xu Z; Zhang H; Tian J; Ku X; Wei R; Hou J; Zhang C; Yang F; Zou X; Li Y; Kaji H; Tao SC; Kuno A; Yan W; Da LT; Zhang Y Acta Biochim Biophys Sin (Shanghai); 2024 Jul; 56(8):1118-1129. PubMed ID: 39066577 [TBL] [Abstract][Full Text] [Related]
9. Structural insights into the modulation of coronavirus spike tilting and infectivity by hinge glycans. Chmielewski D; Wilson EA; Pintilie G; Zhao P; Chen M; Schmid MF; Simmons G; Wells L; Jin J; Singharoy A; Chiu W Nat Commun; 2023 Nov; 14(1):7175. PubMed ID: 37935678 [TBL] [Abstract][Full Text] [Related]
10. Synergistic antiviral effect of hydroxychloroquine and azithromycin in combination against SARS-CoV-2: What molecular dynamics studies of virus-host interactions reveal. Fantini J; Chahinian H; Yahi N Int J Antimicrob Agents; 2020 Aug; 56(2):106020. PubMed ID: 32405156 [TBL] [Abstract][Full Text] [Related]
11. Structural basis of severe acute respiratory syndrome coronavirus 2 infection. Ge J; Zhang S; Zhang L; Wang X Curr Opin HIV AIDS; 2021 Jan; 16(1):74-81. PubMed ID: 33186231 [TBL] [Abstract][Full Text] [Related]
12. Phage-Displayed Mimotopes of SARS-CoV-2 Spike Protein Targeted to Authentic and Alternative Cellular Receptors. Petrenko VA; Gillespie JW; De Plano LM; Shokhen MA Viruses; 2022 Feb; 14(2):. PubMed ID: 35215976 [TBL] [Abstract][Full Text] [Related]
13. Distinct shifts in site-specific glycosylation pattern of SARS-CoV-2 spike proteins associated with arising mutations in the D614G and Alpha variants. Kuo CW; Yang TJ; Chien YC; Yu PY; Hsu SD; Khoo KH Glycobiology; 2022 Feb; 32(1):60-72. PubMed ID: 34735575 [TBL] [Abstract][Full Text] [Related]
14. Enhanced Surface Accessibility of SARS-CoV-2 Omicron Spike Protein Due to an Altered Glycosylation Profile. Wang D; Zhang Z; Baudys J; Haynes C; Osman SH; Zhou B; Barr JR; Gumbart JC ACS Infect Dis; 2024 Jun; 10(6):2032-2046. PubMed ID: 38728322 [TBL] [Abstract][Full Text] [Related]
16. Deducing the N- and O-glycosylation profile of the spike protein of novel coronavirus SARS-CoV-2. Shajahan A; Supekar NT; Gleinich AS; Azadi P Glycobiology; 2020 Dec; 30(12):981-988. PubMed ID: 32363391 [TBL] [Abstract][Full Text] [Related]
17. Targeting SARS-CoV-2 spike protein of COVID-19 with naturally occurring phytochemicals: an Pandey P; Rane JS; Chatterjee A; Kumar A; Khan R; Prakash A; Ray S J Biomol Struct Dyn; 2021 Oct; 39(16):6306-6316. PubMed ID: 32698689 [TBL] [Abstract][Full Text] [Related]
18. The Importance of Glycosylation in COVID-19 Infection. Petrović T; Lauc G; Trbojević-Akmačić I Adv Exp Med Biol; 2021; 1325():239-264. PubMed ID: 34495539 [TBL] [Abstract][Full Text] [Related]
19. Transformations, Lineage Comparisons, and Analysis of Down-to-Up Protomer States of Variants of the SARS-CoV-2 Prefusion Spike Protein, Including the UK Variant B.1.1.7. Peters MH; Bastidas O; Kokron DS; Henze CE Microbiol Spectr; 2021 Sep; 9(1):e0003021. PubMed ID: 34346753 [TBL] [Abstract][Full Text] [Related]