These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 35737940)

  • 1. Tunable Synthesis of Hydrogel Microfibers via Interfacial Tetrazine Ligation.
    George OJ; Song J; Benson JM; Fang Y; Zhang H; Burris DL; Fox JM; Jia X
    Biomacromolecules; 2022 Jul; 23(7):3017-3030. PubMed ID: 35737940
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cellular interactions with hydrogel microfibers synthesized via interfacial tetrazine ligation.
    Liu S; Moore AC; Zerdoum AB; Zhang H; Scinto SL; Zhang H; Gong L; Burris DL; Rajasekaran AK; Fox JM; Jia X
    Biomaterials; 2018 Oct; 180():24-35. PubMed ID: 30014964
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The impact of functional groups of poly(ethylene glycol) macromers on the physical properties of photo-polymerized hydrogels and the local inflammatory response in the host.
    Day JR; David A; Kim J; Farkash EA; Cascalho M; Milašinović N; Shikanov A
    Acta Biomater; 2018 Feb; 67():42-52. PubMed ID: 29242160
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-throughput double emulsion-based microfluidic production of hydrogel microspheres with tunable chemical functionalities toward biomolecular conjugation.
    Liu EY; Jung S; Weitz DA; Yi H; Choi CH
    Lab Chip; 2018 Jan; 18(2):323-334. PubMed ID: 29242870
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatial Patterning of Molecular Cues and Vascular Cells in Fully Integrated Hydrogel Channels via Interfacial Bioorthogonal Cross-Linking.
    Dicker KT; Moore AC; Garabedian NT; Zhang H; Scinto SL; Akins RE; Burris DL; Fox JM; Jia X
    ACS Appl Mater Interfaces; 2019 May; 11(18):16402-16411. PubMed ID: 30998317
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nondestructive evaluation of a new hydrolytically degradable and photo-clickable PEG hydrogel for cartilage tissue engineering.
    Neumann AJ; Quinn T; Bryant SJ
    Acta Biomater; 2016 Jul; 39():1-11. PubMed ID: 27180026
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioactive hydrogels made from step-growth derived PEG-peptide macromers.
    Miller JS; Shen CJ; Legant WR; Baranski JD; Blakely BL; Chen CS
    Biomaterials; 2010 May; 31(13):3736-43. PubMed ID: 20138664
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Core-Shell Microfibers via Bioorthogonal Layer-by-Layer Assembly.
    Ravikrishnan A; Zhang H; Fox JM; Jia X
    ACS Macro Lett; 2020 Sep; 9(9):1369-1375. PubMed ID: 35638624
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced mechanical and cell adhesive properties of photo-crosslinked PEG hydrogels by incorporation of gelatin in the networks.
    Liang J; Guo Z; Timmerman A; Grijpma D; Poot A
    Biomed Mater; 2019 Jan; 14(2):024102. PubMed ID: 30524039
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic Click Hydrogels for Xeno-Free Culture of Induced Pluripotent Stem Cells.
    Arkenberg MR; Dimmitt NH; Johnson HC; Koehler KR; Lin CC
    Adv Biosyst; 2020 Nov; 4(11):e2000129. PubMed ID: 32924337
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Meter-long multiblock copolymer microfibers via interfacial bioorthogonal polymerization.
    Liu S; Zhang H; Remy RA; Deng F; Mackay ME; Fox JM; Jia X
    Adv Mater; 2015 May; 27(17):2783-90. PubMed ID: 25824805
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Degradable poly(ethylene glycol) (PEG)-based hydrogels for spatiotemporal control of siRNA/nanoparticle delivery.
    Wang Y; Zhang S; Benoit DSW
    J Control Release; 2018 Oct; 287():58-66. PubMed ID: 30077736
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cell encapsulation spatially alters crosslink density of poly(ethylene glycol) hydrogels formed from free-radical polymerizations.
    Chu S; Maples MM; Bryant SJ
    Acta Biomater; 2020 Jun; 109():37-50. PubMed ID: 32268243
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conformationally Strained trans-Cyclooctene (sTCO) Enables the Rapid Construction of (18)F-PET Probes via Tetrazine Ligation.
    Wang M; Svatunek D; Rohlfing K; Liu Y; Wang H; Giglio B; Yuan H; Wu Z; Li Z; Fox J
    Theranostics; 2016; 6(6):887-95. PubMed ID: 27162558
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoscale physicochemical properties of chain- and step-growth polymerized PEG hydrogels affect cell-material interactions.
    Vats K; Marsh G; Harding K; Zampetakis I; Waugh RE; Benoit DS
    J Biomed Mater Res A; 2017 Apr; 105(4):1112-1122. PubMed ID: 28093865
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Matrix Adhesiveness Regulates Myofibroblast Differentiation from Vocal Fold Fibroblasts in a Bio-orthogonally Cross-linked Hydrogel.
    Song J; Gao H; Zhang H; George OJ; Hillman AS; Fox JM; Jia X
    ACS Appl Mater Interfaces; 2022 Nov; 14(46):51669-51682. PubMed ID: 36367478
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Homodimeric Protein-Polymer Conjugates via the Tetrazine-
    Lorenzo MM; Decker CG; Kahveci MU; Paluck SJ; Maynard HD
    Macromolecules; 2016 Jan; 49(1):30-37. PubMed ID: 26949271
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel degradable poly(ethylene glycol) hydrogels for controlled release of protein.
    Zhao X; Harris JM
    J Pharm Sci; 1998 Nov; 87(11):1450-8. PubMed ID: 9811505
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrolytically degradable poly(ethylene glycol) hydrogel scaffolds with tunable degradation and mechanical properties.
    Zustiak SP; Leach JB
    Biomacromolecules; 2010 May; 11(5):1348-57. PubMed ID: 20355705
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of the crosslinking kinetics of multi-arm poly(ethylene glycol) hydrogels formed via Michael-type addition.
    Kim J; Kong YP; Niedzielski SM; Singh RK; Putnam AJ; Shikanov A
    Soft Matter; 2016 Feb; 12(7):2076-85. PubMed ID: 26750719
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.