These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 35737999)
1. Tailoring the Surface of Natural Graphite with Functional Metal Oxides via Facile Crystallization for Lithium-Ion Batteries. Lee JW; Kim SY; Rhee DY; Park S; Jung JY; Park MS ACS Appl Mater Interfaces; 2022 Jul; 14(26):29797-29805. PubMed ID: 35737999 [TBL] [Abstract][Full Text] [Related]
2. Surface Decoration of TiC Nanocrystals onto the Graphite Anode Enables Fast-Charging Lithium-Ion Batteries. Suh JH; Choi I; Park S; Kim DK; Kim Y; Park MS ACS Appl Mater Interfaces; 2024 Feb; 16(7):8853-8862. PubMed ID: 38346852 [TBL] [Abstract][Full Text] [Related]
3. Three-Dimensional Flower-like MoS Lee YA; Jang KY; Yoo J; Yim K; Jung W; Jung KN; Yoo CY; Cho Y; Lee J; Ryu MH; Shin H; Lee K; Yoon H Materials (Basel); 2023 May; 16(11):. PubMed ID: 37297150 [TBL] [Abstract][Full Text] [Related]
4. 3D Pathways Enabling Highly-Efficient Lithium Reservoir for Fast-Charging Batteries. Han SA; Suh JH; Kim J; Park S; Jeong WU; Shimada Y; Kim JH; Park MS; Dou SX Small; 2024 Jun; 20(26):e2310201. PubMed ID: 38243889 [TBL] [Abstract][Full Text] [Related]
5. Building Polymeric Framework Layer for Stable Solid Electrolyte Interphase on Natural Graphite Anode. Zhao Y; Wang Y; Liang R; Zhu G; Xiong W; Zheng H Molecules; 2022 Nov; 27(22):. PubMed ID: 36431927 [TBL] [Abstract][Full Text] [Related]
6. Kinetic Limits of Graphite Anode for Fast-Charging Lithium-Ion Batteries. Weng S; Yang G; Zhang S; Liu X; Zhang X; Liu Z; Cao M; Ateş MN; Li Y; Chen L; Wang Z; Wang X Nanomicro Lett; 2023 Sep; 15(1):215. PubMed ID: 37737445 [TBL] [Abstract][Full Text] [Related]
7. Revisiting the Roles of Natural Graphite in Ongoing Lithium-Ion Batteries. Zhao L; Ding B; Qin XY; Wang Z; Lv W; He YB; Yang QH; Kang F Adv Mater; 2022 May; 34(18):e2106704. PubMed ID: 35032965 [TBL] [Abstract][Full Text] [Related]
8. Scalable Preparation of Ternary Hierarchical Silicon Oxide-Nickel-Graphite Composites for Lithium-Ion Batteries. Wang J; Bao W; Ma L; Tan G; Su Y; Chen S; Wu F; Lu J; Amine K ChemSusChem; 2015 Dec; 8(23):4073-80. PubMed ID: 26548901 [TBL] [Abstract][Full Text] [Related]
9. Fast-charging anodes for lithium ion batteries: progress and challenges. Ding X; Zhou Q; Li X; Xiong X Chem Commun (Camb); 2024 Feb; 60(18):2472-2488. PubMed ID: 38314874 [TBL] [Abstract][Full Text] [Related]
10. A Weakly Solvating Ether Electrolyte Enables Fast-Charging and Wide-Temperature Lithium-Ion Pouch Cells. Liao Y; Lin W; Zhang Y; Yang J; Li Z; Ren Y; Wang D; Huang Y; Yuan L ACS Nano; 2024 Jul; ():. PubMed ID: 39066714 [TBL] [Abstract][Full Text] [Related]
11. Introducing a Pseudocapacitive Lithium Storage Mechanism into Graphite by Defect Engineering for Fast-Charging Lithium-Ion Batteries. Wang M; Wang J; Xiao J; Ren N; Pan B; Chen CS; Chen CH ACS Appl Mater Interfaces; 2022 Apr; 14(14):16279-16288. PubMed ID: 35349272 [TBL] [Abstract][Full Text] [Related]
12. Two-Dimensional Cr-Doped MoO Lu H; Yang C; Li C; Wang L; Wang H ACS Appl Mater Interfaces; 2019 Apr; 11(14):13405-13415. PubMed ID: 30893996 [TBL] [Abstract][Full Text] [Related]
13. Synchronous Manipulation of Ion and Electron Transfer in Wadsley-Roth Phase Ti-Nb Oxides for Fast-Charging Lithium-Ion Batteries. Yang Y; Huang J; Cao Z; Lv Z; Wu D; Wen Z; Meng W; Zeng J; Li CC; Zhao J Adv Sci (Weinh); 2022 Feb; 9(6):e2104530. PubMed ID: 34962107 [TBL] [Abstract][Full Text] [Related]
14. Insights into the Enhanced Reversibility of Graphite Anode Upon Fast Charging Through Li Reservoir. Qian J; Zhu T; Huang D; Liu G; Tong W ACS Nano; 2022 Dec; 16(12):20197-20205. PubMed ID: 36469725 [TBL] [Abstract][Full Text] [Related]
15. Interface optimization mechanism and quantitative analysis of hybrid graphite anode for fast-charging lithium-ion batteries. Gong H; Du P; Zhang B; Xiao Z; Ming L; Ou X J Colloid Interface Sci; 2025 Jan; 678(Pt C):472-481. PubMed ID: 39303565 [TBL] [Abstract][Full Text] [Related]
16. Interfacial Model Deciphering High-Voltage Electrolytes for High Energy Density, High Safety, and Fast-Charging Lithium-Ion Batteries. Zou Y; Cao Z; Zhang J; Wahyudi W; Wu Y; Liu G; Li Q; Cheng H; Zhang D; Park GT; Cavallo L; Anthopoulos TD; Wang L; Sun YK; Ming J Adv Mater; 2021 Oct; 33(43):e2102964. PubMed ID: 34510582 [TBL] [Abstract][Full Text] [Related]
17. From graphite of used lithium-ion batteries to holey graphite coated by carbon with enhanced lithium storage capability. Huang S; Fan Q; Chen X; Wu Y; Liu L; Yu Z; Xu J J Colloid Interface Sci; 2024 Dec; 676():197-206. PubMed ID: 39024820 [TBL] [Abstract][Full Text] [Related]
18. Eliminating Graphite Exfoliation with an Artificial Solid Electrolyte Interphase for Stable Lithium-Ion Batteries. Zhou J; Ma K; Lian X; Shi Q; Wang J; Chen Z; Guo L; Liu Y; Bachmatiuk A; Sun J; Yang R; Choi JH; Rümmeli MH Small; 2022 Apr; 18(15):e2107460. PubMed ID: 35224838 [TBL] [Abstract][Full Text] [Related]
19. Nitrogen-Enriched Porous Carbon Coating for Manganese Oxide Nanostructures toward High-Performance Lithium-Ion Batteries. Wang J; Zhang C; Kang F ACS Appl Mater Interfaces; 2015 May; 7(17):9185-94. PubMed ID: 25871883 [TBL] [Abstract][Full Text] [Related]
20. Surface Stabilization of Cobalt-Free LiNiO Ober S; Mesnier A; Manthiram A ACS Appl Mater Interfaces; 2023 Jan; 15(1):1442-1451. PubMed ID: 36594479 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]