These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 35738129)
1. Preparation and formation mechanism of biomass-based graphite carbon catalyzed by iron nitrate under a low-temperature condition. Sun Z; Yao D; Cao C; Zhang Z; Zhang L; Zhu H; Yuan Q; Yi B J Environ Manage; 2022 Sep; 318():115555. PubMed ID: 35738129 [TBL] [Abstract][Full Text] [Related]
2. Solid-phase synthesis of graphitic carbon nanostructures from iron and cobalt gluconates and their utilization as electrocatalyst supports. Sevilla M; Salinas Martínez-de Lecea C; Valdés-Solís T; Morallón E; Fuertes AB Phys Chem Chem Phys; 2008 Mar; 10(10):1433-42. PubMed ID: 18309400 [TBL] [Abstract][Full Text] [Related]
3. Graphitic Mesoporous Carbon Loaded with Iron-Nickel Hydroxide for Superior Oxygen Evolution Reactivity. Wang L; Huang X; Xue J ChemSusChem; 2016 Jul; 9(14):1835-42. PubMed ID: 27312811 [TBL] [Abstract][Full Text] [Related]
4. Pyrolysis gas from biomass and plastics over X-Mo@MgO (X = Ni, Fe, Co) catalysts into functional carbon nanocomposite: Gas reforming reaction and proper process mechanisms. Dong H; Liu M; Yan X; Qian Z; Xie Y; Luo W; Lei C; Zhou Z Sci Total Environ; 2022 Jul; 831():154751. PubMed ID: 35341874 [TBL] [Abstract][Full Text] [Related]
5. Synthesis and Growth of Green Graphene from Biochar Revealed by Magnetic Properties of Iron Catalyst. Ghogia AC; Romero Millán LM; White CE; Nzihou A ChemSusChem; 2023 Feb; 16(3):e202201864. PubMed ID: 36336661 [TBL] [Abstract][Full Text] [Related]
7. Gasification of pine sawdust via synergetic conversion using iron ore as a catalyst. Wang L; Yang Y; Zhong Q; Li Q; Jiang T Bioresour Technol; 2022 Jul; 355():127240. PubMed ID: 35489569 [TBL] [Abstract][Full Text] [Related]
8. Graphitic-Carbon Layers on Oxides: Toward Stable Heterogeneous Catalysts for Biomass Conversion Reactions. Xiong H; Schwartz TJ; Andersen NI; Dumesic JA; Datye AK Angew Chem Int Ed Engl; 2015 Jun; 54(27):7939-43. PubMed ID: 25973732 [TBL] [Abstract][Full Text] [Related]
9. Recent Advances in Synthesis of Graphite from Agricultural Bio-Waste Material: A Review. Yap YW; Mahmed N; Norizan MN; Abd Rahim SZ; Ahmad Salimi MN; Abdul Razak K; Mohamad IS; Abdullah MMA; Mohamad Yunus MY Materials (Basel); 2023 May; 16(9):. PubMed ID: 37176484 [TBL] [Abstract][Full Text] [Related]
10. Bio-based anode material production for lithium-ion batteries through catalytic graphitization of biochar: the deployment of hybrid catalysts. Shi Z; Jin Y; Han T; Yang H; Gond R; Subasi Y; Asfaw HD; Younesi R; Jönsson PG; Yang W Sci Rep; 2024 Feb; 14(1):3966. PubMed ID: 38368434 [TBL] [Abstract][Full Text] [Related]
11. Temperature-programmed hydrogenation (TPH) and in situ Mössbauer spectroscopy studies of carbonaceous species on silica-supported iron Fischer-Tropsch catalysts. Xu J; Bartholomew CH J Phys Chem B; 2005 Feb; 109(6):2392-403. PubMed ID: 16851234 [TBL] [Abstract][Full Text] [Related]
12. Catalytic co-pyrolysis of herb residue and polypropylene for pyrolysis products upgrading and diversification using nickel-X/biochar and ZSM-5 (X = iron, cobalt, copper). Luo W; Wang T; Zhang S; Zhang D; Dong H; Song M; Zhou Z Bioresour Technol; 2022 Apr; 349():126845. PubMed ID: 35158035 [TBL] [Abstract][Full Text] [Related]
13. Pyrolysis of Chinese chestnut shells: Effects of temperature and Fe presence on product composition. Xia S; Li K; Xiao H; Cai N; Dong Z; Xu C; Chen Y; Yang H; Tu X; Chen H Bioresour Technol; 2019 Sep; 287():121444. PubMed ID: 31096102 [TBL] [Abstract][Full Text] [Related]
14. Ecofriendly Synthesis of Waste-Tire-Derived Graphite Nanoflakes by a Low-Temperature Electrochemical Graphitization Process toward a Silicon-Based Anode with a High-Performance Lithium-Ion Battery. Wu SC; Lin CW; Chang PC; Yang TY; Tang SY; Wu DC; Liao CR; Wang YC; Lee L; Yu YJ; Chueh YL ACS Appl Mater Interfaces; 2023 Mar; 15(12):15279-15289. PubMed ID: 36921119 [TBL] [Abstract][Full Text] [Related]
15. Catalytic pyrolysis of lotus leaves for producing nitrogen self-doping layered graphitic biochar: Performance and mechanism for peroxydisulfate activation. Liu F; Ding J; Zhao G; Zhao Q; Wang K; Wang G; Gao Q Chemosphere; 2022 Sep; 302():134868. PubMed ID: 35533937 [TBL] [Abstract][Full Text] [Related]
16. An Efficient Metal-Free Catalyst for Oxidative Dehydrogenation Reaction: Activated Carbon Decorated with Few-Layer Graphene. Zhang Y; Diao J; Rong J; Zhang J; Xie J; Huang F; Jia Z; Liu H; Su DS ChemSusChem; 2018 Feb; 11(3):536-541. PubMed ID: 29292853 [TBL] [Abstract][Full Text] [Related]
17. Miscanthus as a carbon precursor for graphene oxide: A possibility influenced by pyrolysis temperature. Yan Y; Meng Y; Zhao H; Lester E; Wu T; Pang CH Bioresour Technol; 2021 Jul; 331():124934. PubMed ID: 33798864 [TBL] [Abstract][Full Text] [Related]
18. Preparation of graphitic carbon nanofibers with the use of water-soluble supports. Steigerwalt ES; Lukehart CM J Nanosci Nanotechnol; 2002 Feb; 2(1):25-8. PubMed ID: 12908314 [TBL] [Abstract][Full Text] [Related]
19. Highly active and durable carbon electrocatalyst for nitrate reduction reaction. Duan W; Li G; Lei Z; Zhu T; Xue Y; Wei C; Feng C Water Res; 2019 Sep; 161():126-135. PubMed ID: 31185375 [TBL] [Abstract][Full Text] [Related]
20. High-value products from ex-situ catalytic pyrolysis of polypropylene waste using iron-based catalysts: the influence of support materials. Cai N; Xia S; Li X; Xiao H; Chen X; Chen Y; Bartocci P; Chen H; Williams PT; Yang H Waste Manag; 2021 Dec; 136():47-56. PubMed ID: 34637978 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]