These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 35738246)

  • 21. Skyrmion crystal phases in Kondo lattice model on triangular lattices.
    Jana S; Reja S
    J Phys Condens Matter; 2023 May; 35(34):. PubMed ID: 37084741
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Skyrmions and Spin Waves in Magneto-Ferroelectric Superlattices.
    Sharafullin IF; Diep HT
    Entropy (Basel); 2020 Aug; 22(8):. PubMed ID: 33286633
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Magnetic Chirality Controlled by the Interlayer Exchange Interaction.
    Meijer MJ; Lucassen J; Kurnosikov O; Swagten HJM; Koopmans B; Lavrijsen R; Kloodt-Twesten F; Frömter R; Duine RA
    Phys Rev Lett; 2020 May; 124(20):207203. PubMed ID: 32501071
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Alloying Driven Antiferromagnetic Skyrmions on NiPS
    Wang Y; Xing J; Zhao Y; Wang Y; Zhao J; Jiang X
    Adv Sci (Weinh); 2024 Jul; 11(25):e2401048. PubMed ID: 38647400
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A theory of skyrmion crystal formation.
    Hu XC; Wu HT; Wang XR
    Nanoscale; 2022 May; 14(20):7516-7529. PubMed ID: 35545217
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Skyrmion-skyrmion interaction in a magnetic film.
    Capic D; Garanin DA; Chudnovsky EM
    J Phys Condens Matter; 2020 Jul; 32(41):. PubMed ID: 32526724
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Isolated skyrmion, skyrmion lattice and antiskyrmion lattice creation through magnetization reversal in Co/Pd nanostructure.
    Kandukuri S; Murthy VSN; Thiruvikraman PK
    Sci Rep; 2021 Sep; 11(1):18945. PubMed ID: 34556719
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Kinetics of Magnetic Skyrmion Crystal Formation from the Conical Phase.
    Kim TH; Zhao H; Ong PV; Jensen BA; Cui B; King AH; Ke L; Zhou L
    Nano Lett; 2021 Jul; 21(13):5547-5554. PubMed ID: 34185540
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Magnetic Skyrmion Materials.
    Tokura Y; Kanazawa N
    Chem Rev; 2021 Mar; 121(5):2857-2897. PubMed ID: 33164494
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ultrasensitive Sub-monolayer Palladium Induced Chirality Switching and Topological Evolution of Skyrmions.
    Chen G; Ophus C; Lo Conte R; Wiesendanger R; Yin G; Schmid AK; Liu K
    Nano Lett; 2022 Aug; 22(16):6678-6684. PubMed ID: 35939526
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Skyrmions at vanishingly small Dzyaloshinskii-Moriya interaction or zero magnetic field.
    Bera S; Mandal SS
    J Phys Condens Matter; 2021 May; 33(25):. PubMed ID: 33848984
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mechanisms of Skyrmion and Skyrmion Crystal Formation from the Conical Phase.
    Kim TH; Zhao H; Xu B; Jensen BA; King AH; Kramer MJ; Nan C; Ke L; Zhou L
    Nano Lett; 2020 Jul; 20(7):4731-4738. PubMed ID: 32202799
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Current-induced skyrmion generation and dynamics in symmetric bilayers.
    Hrabec A; Sampaio J; Belmeguenai M; Gross I; Weil R; Chérif SM; Stashkevich A; Jacques V; Thiaville A; Rohart S
    Nat Commun; 2017 Jun; 8():15765. PubMed ID: 28593949
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Gradient-Induced Dzyaloshinskii-Moriya Interaction.
    Liang J; Chshiev M; Fert A; Yang H
    Nano Lett; 2022 Dec; 22(24):10128-10133. PubMed ID: 36520645
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Role of isotropic and anisotropic Dzyaloshinskii-Moriya interaction on skyrmions, merons and antiskyrmions in the
    Bera S
    J Phys Condens Matter; 2024 Feb; 36(19):. PubMed ID: 38316047
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Controlling Dzyaloshinskii-Moriya interaction in a centrosymmetric nonsymmorphic crystal.
    Zhang Z; Qin S; Zang J; Fang C; Hu J; Zhang FC
    Sci Bull (Beijing); 2023 Jun; 68(11):1113-1118. PubMed ID: 37208269
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electric Field-Induced Creation and Directional Motion of Domain Walls and Skyrmion Bubbles.
    Ma C; Zhang X; Xia J; Ezawa M; Jiang W; Ono T; Piramanayagam SN; Morisako A; Zhou Y; Liu X
    Nano Lett; 2019 Jan; 19(1):353-361. PubMed ID: 30537837
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Simulating anti-skyrmions on a lattice.
    Criado JC; Schenk S; Spannowsky M; Hatton PD; Turnbull LA
    Sci Rep; 2022 Nov; 12(1):19179. PubMed ID: 36357466
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Meron-Mediated Phase Transitions in Quasi-Two-Dimensional Chiral Magnets with Easy-Plane Anisotropy: Successive Transformation of the Hexagonal Skyrmion Lattice into the Square Lattice and into the Tilted FM State.
    Leonov AO
    Nanomaterials (Basel); 2024 Sep; 14(18):. PubMed ID: 39330681
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Eliminating Skyrmion Hall Effect in Ferromagnetic Skyrmions.
    Zhang X; Wan G; Zhang J; Zhang YF; Pan J; Du S
    Nano Lett; 2024 Sep; 24(35):10796-10804. PubMed ID: 39190460
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.