These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 35738331)

  • 1. A two-stage framework for neural processing of biological motion.
    Duarte JV; Abreu R; Castelo-Branco M
    Neuroimage; 2022 Oct; 259():119403. PubMed ID: 35738331
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human functional magnetic resonance imaging reveals separation and integration of shape and motion cues in biological motion processing.
    Jastorff J; Orban GA
    J Neurosci; 2009 Jun; 29(22):7315-29. PubMed ID: 19494153
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of motion in the neural representation of social interactions in the posterior temporal cortex.
    Landsiedel J; Daughters K; Downing PE; Koldewyn K
    Neuroimage; 2022 Nov; 262():119533. PubMed ID: 35931309
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distinct effects of attention on the neural responses to form and motion processing: a SSVEP source-imaging study.
    Palomares M; Ales JM; Wade AR; Cottereau BR; Norcia AM
    J Vis; 2012 Sep; 12(10):15. PubMed ID: 23019120
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distinct neural mechanisms for body form and body motion discriminations.
    Vangeneugden J; Peelen MV; Tadin D; Battelli L
    J Neurosci; 2014 Jan; 34(2):574-85. PubMed ID: 24403156
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dorsal stream development in motion and structure-from-motion perception.
    Klaver P; Lichtensteiger J; Bucher K; Dietrich T; Loenneker T; Martin E
    Neuroimage; 2008 Feb; 39(4):1815-23. PubMed ID: 18096410
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of dorsal and ventral stream development in biological motion perception.
    Lichtensteiger J; Loenneker T; Bucher K; Martin E; Klaver P
    Neuroreport; 2008 Dec; 19(18):1763-7. PubMed ID: 18955908
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dissociation of extrastriate body and biological-motion selective areas by manipulation of visual-motor congruency.
    Kontaris I; Wiggett AJ; Downing PE
    Neuropsychologia; 2009 Dec; 47(14):3118-24. PubMed ID: 19643118
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pivotal role of hMT+ in long-range disambiguation of interhemispheric bistable surface motion.
    Duarte JV; Costa GN; Martins R; Castelo-Branco M
    Hum Brain Mapp; 2017 Oct; 38(10):4882-4897. PubMed ID: 28660667
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Global versus local: double dissociation between MT+ and V3A in motion processing revealed using continuous theta burst transcranial magnetic stimulation.
    Cai P; Chen N; Zhou T; Thompson B; Fang F
    Exp Brain Res; 2014 Dec; 232(12):4035-41. PubMed ID: 25200175
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aberrant patterns of neural activity when perceiving emotion from biological motion in schizophrenia.
    Jimenez AM; Lee J; Reavis EA; Wynn JK; Green MF
    Neuroimage Clin; 2018; 20():380-387. PubMed ID: 30128276
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigating the neural basis of basic human movement perception using multi-voxel pattern analysis.
    Ma F; Xu J; Li X; Wang P; Wang B; Liu B
    Exp Brain Res; 2018 Mar; 236(3):907-918. PubMed ID: 29362830
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Not one extrastriate body area: using anatomical landmarks, hMT+, and visual field maps to parcellate limb-selective activations in human lateral occipitotemporal cortex.
    Weiner KS; Grill-Spector K
    Neuroimage; 2011 Jun; 56(4):2183-99. PubMed ID: 21439386
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dorsal and ventral stream contributions to form-from-motion perception in a patient with form-from motion deficit: a case report.
    Mercier MR; Schwartz S; Spinelli L; Michel CM; Blanke O
    Brain Struct Funct; 2017 Mar; 222(2):1093-1107. PubMed ID: 27318997
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Visual learning shapes the processing of complex movement stimuli in the human brain.
    Jastorff J; Kourtzi Z; Giese MA
    J Neurosci; 2009 Nov; 29(44):14026-38. PubMed ID: 19890012
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coherent motion processing in autism spectrum disorder (ASD): an fMRI study.
    Brieber S; Herpertz-Dahlmann B; Fink GR; Kamp-Becker I; Remschmidt H; Konrad K
    Neuropsychologia; 2010 May; 48(6):1644-51. PubMed ID: 20153764
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neural correlates associated with impaired global motion perception in cerebral visual impairment (CVI).
    Pamir Z; Bauer CM; Bailin ES; Bex PJ; Somers DC; Merabet LB
    Neuroimage Clin; 2021; 32():102821. PubMed ID: 34628303
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visual areas involved in the perception of human movement from dynamic form analysis.
    Michels L; Lappe M; Vaina LM
    Neuroreport; 2005 Jul; 16(10):1037-41. PubMed ID: 15973144
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Perceiving animacy purely from visual motion cues involves intraparietal sulcus.
    Schultz J; Bülthoff HH
    Neuroimage; 2019 Aug; 197():120-132. PubMed ID: 31028922
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neural interactions in occipitotemporal cortex during basic human movement perception by dynamic causal modeling.
    Gu J; Liu B; Sun X; Ma F; Li X
    Brain Imaging Behav; 2021 Feb; 15(1):231-243. PubMed ID: 32141031
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.