BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 35738478)

  • 1. The role of PAP4/FSD3 and PAP9/FSD2 in heat stress responses of chloroplast genes.
    Bychkov IA; Andreeva AA; Kudryakova NV; Pojidaeva ES; Kusnetsov VV
    Plant Sci; 2022 Sep; 322():111359. PubMed ID: 35738478
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A heterocomplex of iron superoxide dismutases defends chloroplast nucleoids against oxidative stress and is essential for chloroplast development in Arabidopsis.
    Myouga F; Hosoda C; Umezawa T; Iizumi H; Kuromori T; Motohashi R; Shono Y; Nagata N; Ikeuchi M; Shinozaki K
    Plant Cell; 2008 Nov; 20(11):3148-62. PubMed ID: 18996978
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Plastid-Encoded RNA Polymerase-Associated Protein PAP9 Is a Superoxide Dismutase With Unusual Structural Features.
    Favier A; Gans P; Boeri Erba E; Signor L; Muthukumar SS; Pfannschmidt T; Blanvillain R; Cobessi D
    Front Plant Sci; 2021; 12():668897. PubMed ID: 34276730
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An isoform of the plastid RNA polymerase-associated protein FSD3 negatively regulates chloroplast development.
    Lee S; Joung YH; Kim JK; Do Choi Y; Jang G
    BMC Plant Biol; 2019 Nov; 19(1):524. PubMed ID: 31775615
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chloroplast-localized iron superoxide dismutases FSD2 and FSD3 are functionally distinct in Arabidopsis.
    Gallie DR; Chen Z
    PLoS One; 2019; 14(7):e0220078. PubMed ID: 31329637
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arabidopsis Plastid-RNA Polymerase RPOTp Is Involved in Abiotic Stress Tolerance.
    Lidón-Soto A; Núñez-Delegido E; Pastor-Martínez I; Robles P; Quesada V
    Plants (Basel); 2020 Jul; 9(7):. PubMed ID: 32630785
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PRDA1, a novel chloroplast nucleoid protein, is required for early chloroplast development and is involved in the regulation of plastid gene expression in Arabidopsis.
    Qiao J; Li J; Chu W; Luo M
    Plant Cell Physiol; 2013 Dec; 54(12):2071-84. PubMed ID: 24132784
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential impact of heat stress on the expression of chloroplast-encoded genes.
    Danilova MN; Kudryakova NV; Andreeva AA; Doroshenko AS; Pojidaeva ES; Kusnetsov VV
    Plant Physiol Biochem; 2018 Aug; 129():90-100. PubMed ID: 29852366
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impaired function of the phage-type RNA polymerase RpoTp in transcription of chloroplast genes is compensated by a second phage-type RNA polymerase.
    Swiatecka-Hagenbruch M; Emanuel C; Hedtke B; Liere K; Börner T
    Nucleic Acids Res; 2008 Feb; 36(3):785-92. PubMed ID: 18084023
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chloroplast small heat shock protein HSP21 interacts with plastid nucleoid protein pTAC5 and is essential for chloroplast development in Arabidopsis under heat stress.
    Zhong L; Zhou W; Wang H; Ding S; Lu Q; Wen X; Peng L; Zhang L; Lu C
    Plant Cell; 2013 Aug; 25(8):2925-43. PubMed ID: 23922206
    [TBL] [Abstract][Full Text] [Related]  

  • 11. pTAC10, a Key Subunit of Plastid-Encoded RNA Polymerase, Promotes Chloroplast Development.
    Chang SH; Lee S; Um TY; Kim JK; Do Choi Y; Jang G
    Plant Physiol; 2017 May; 174(1):435-449. PubMed ID: 28336770
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A nuclear-encoded protein, mTERF6, mediates transcription termination of rpoA polycistron for plastid-encoded RNA polymerase-dependent chloroplast gene expression and chloroplast development.
    Zhang Y; Cui YL; Zhang XL; Yu QB; Wang X; Yuan XB; Qin XM; He XF; Huang C; Yang ZN
    Sci Rep; 2018 Aug; 8(1):11929. PubMed ID: 30093718
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A fully assembled plastid-encoded RNA polymerase complex detected in etioplasts and proplastids in Arabidopsis.
    Ji Y; Lehotai N; Zan Y; Dubreuil C; Díaz MG; Strand Å
    Physiol Plant; 2021 Mar; 171(3):435-446. PubMed ID: 33155308
    [TBL] [Abstract][Full Text] [Related]  

  • 14. pTAC10, an S1-domain-containing component of the transcriptionally active chromosome complex, is essential for plastid gene expression in Arabidopsis thaliana and is phosphorylated by chloroplast-targeted casein kinase II.
    Yu QB; Zhao TT; Ye LS; Cheng L; Wu YQ; Huang C; Yang ZN
    Photosynth Res; 2018 Jul; 137(1):69-83. PubMed ID: 29330702
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The plastid redox insensitive 2 mutant of Arabidopsis is impaired in PEP activity and high light-dependent plastid redox signalling to the nucleus.
    Kindgren P; Kremnev D; Blanco NE; de Dios Barajas López J; Fernández AP; Tellgren-Roth C; Kleine T; Small I; Strand A
    Plant J; 2012 Apr; 70(2):279-91. PubMed ID: 22211401
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-resolution map of plastid-encoded RNA polymerase binding patterns demonstrates a major role of transcription in chloroplast gene expression.
    Palomar VM; Jaksich S; Fujii S; Kuciński J; Wierzbicki AT
    Plant J; 2022 Aug; 111(4):1139-1151. PubMed ID: 35765883
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The plastid transcription machinery and its coordination with the expression of nuclear genome: Plastid-Encoded Polymerase, Nuclear-Encoded Polymerase and the Genomes Uncoupled 1-mediated retrograde communication.
    Tadini L; Jeran N; Peracchio C; Masiero S; Colombo M; Pesaresi P
    Philos Trans R Soc Lond B Biol Sci; 2020 Jun; 375(1801):20190399. PubMed ID: 32362266
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impacts of phosphatidylglycerol on plastid gene expression and light induction of nuclear photosynthetic genes.
    Fujii S; Kobayashi K; Lin YC; Liu YC; Nakamura Y; Wada H
    J Exp Bot; 2022 May; 73(9):2952-2970. PubMed ID: 35560187
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Opposite roles of the Arabidopsis cytokinin receptors AHK2 and AHK3 in the expression of plastid genes and genes for the plastid transcriptional machinery during senescence.
    Danilova MN; Kudryakova NV; Doroshenko AS; Zabrodin DA; Rakhmankulova ZF; Oelmüller R; Kusnetsov VV
    Plant Mol Biol; 2017 Mar; 93(4-5):533-546. PubMed ID: 28150126
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptional control of photosynthesis genes: the evolutionarily conserved regulatory mechanism in plastid genome function.
    Puthiyaveetil S; Ibrahim IM; Jelicić B; Tomasić A; Fulgosi H; Allen JF
    Genome Biol Evol; 2010; 2():888-96. PubMed ID: 21071627
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.