These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
218 related articles for article (PubMed ID: 35738951)
1. 3D-printed bi-layered polymer/hydrogel construct for interfacial tissue regeneration in a canine model. Jamalpour MR; Yadegari A; Vahdatinia F; Amirabad LM; Jamshidi S; Shojaei S; Shokri A; Moeinifard E; Omidi M; Tayebi L Dent Mater; 2022 Aug; 38(8):1316-1329. PubMed ID: 35738951 [TBL] [Abstract][Full Text] [Related]
2. Electrospun PCL/gelatin composite nanofiber structures for effective guided bone regeneration membranes. Ren K; Wang Y; Sun T; Yue W; Zhang H Mater Sci Eng C Mater Biol Appl; 2017 Sep; 78():324-332. PubMed ID: 28575991 [TBL] [Abstract][Full Text] [Related]
3. Porosity effect of 3D-printed polycaprolactone membranes on calvarial defect model for guided bone regeneration. Shim JH; Jeong JH; Won JY; Bae JH; Ahn G; Jeon H; Yun WS; Bae EB; Choi JW; Lee SH; Jeong CM; Chung HY; Huh JB Biomed Mater; 2017 Dec; 13(1):015014. PubMed ID: 29155411 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of 3D printed PCL/PLGA/β-TCP versus collagen membranes for guided bone regeneration in a beagle implant model. Won JY; Park CY; Bae JH; Ahn G; Kim C; Lim DH; Cho DW; Yun WS; Shim JH; Huh JB Biomed Mater; 2016 Oct; 11(5):055013. PubMed ID: 27716630 [TBL] [Abstract][Full Text] [Related]
5. Effects of 3D-Printed Polycaprolactone/β-Tricalcium Phosphate Membranes on Guided Bone Regeneration. Shim JH; Won JY; Park JH; Bae JH; Ahn G; Kim CH; Lim DH; Cho DW; Yun WS; Bae EB; Jeong CM; Huh JB Int J Mol Sci; 2017 Apr; 18(5):. PubMed ID: 28441338 [TBL] [Abstract][Full Text] [Related]
6. Engineering 3D-printed core-shell hydrogel scaffolds reinforced with hybrid hydroxyapatite/polycaprolactone nanoparticles for in vivo bone regeneration. El-Habashy SE; El-Kamel AH; Essawy MM; Abdelfattah EA; Eltaher HM Biomater Sci; 2021 Jun; 9(11):4019-4039. PubMed ID: 33899858 [TBL] [Abstract][Full Text] [Related]
9. Ex Vivo and In Vivo Analyses of Novel 3D-Printed Bone Substitute Scaffolds Incorporating Biphasic Calcium Phosphate Granules for Bone Regeneration. Oberdiek F; Vargas CI; Rider P; Batinic M; Görke O; Radenković M; Najman S; Baena JM; Jung O; Barbeck M Int J Mol Sci; 2021 Mar; 22(7):. PubMed ID: 33808303 [TBL] [Abstract][Full Text] [Related]
10. A novel 3D printing PCL/GelMA scaffold containing USPIO for MRI-guided bile duct repair. Li H; Yin Y; Xiang Y; Liu H; Guo R Biomed Mater; 2020 May; 15(4):045004. PubMed ID: 32092713 [TBL] [Abstract][Full Text] [Related]
11. Resorbable PCEC/gelatin-bismuth doped bioglass-graphene oxide bilayer membranes for guided bone regeneration. Pazarçeviren AE; Evis Z; Keskin D; Tezcaner A Biomed Mater; 2019 Apr; 14(3):035018. PubMed ID: 30665204 [TBL] [Abstract][Full Text] [Related]
12. 3D printed hybrid bone constructs of PCL and dental pulp stem cells loaded GelMA. Buyuksungur S; Hasirci V; Hasirci N J Biomed Mater Res A; 2021 Dec; 109(12):2425-2437. PubMed ID: 34033241 [TBL] [Abstract][Full Text] [Related]
13. 3D-printed Mg-incorporated PCL-based scaffolds: A promising approach for bone healing. Dong Q; Zhang M; Zhou X; Shao Y; Li J; Wang L; Chu C; Xue F; Yao Q; Bai J Mater Sci Eng C Mater Biol Appl; 2021 Oct; 129():112372. PubMed ID: 34579891 [TBL] [Abstract][Full Text] [Related]
14. A new method of fabricating a blend scaffold using an indirect three-dimensional printing technique. Jung JW; Lee H; Hong JM; Park JH; Shim JH; Choi TH; Cho DW Biofabrication; 2015 Nov; 7(4):045003. PubMed ID: 26525821 [TBL] [Abstract][Full Text] [Related]
15. 3D-Printed membrane as an alternative to amniotic membrane for ocular surface/conjunctival defect reconstruction: An in vitro & in vivo study. Dehghani S; Rasoulianboroujeni M; Ghasemi H; Keshel SH; Nozarian Z; Hashemian MN; Zarei-Ghanavati M; Latifi G; Ghaffari R; Cui Z; Ye H; Tayebi L Biomaterials; 2018 Aug; 174():95-112. PubMed ID: 29793112 [TBL] [Abstract][Full Text] [Related]
16. Computational investigation of interface printing patterns within 3D printed multilayered scaffolds for osteochondral tissue engineering. Choe R; Devoy E; Kuzemchak B; Sherry M; Jabari E; Packer JD; Fisher JP Biofabrication; 2022 Feb; 14(2):. PubMed ID: 35120345 [TBL] [Abstract][Full Text] [Related]
17. 3D printed hydrogel/PCL core/shell fiber scaffolds with NIR-triggered drug release for cancer therapy and wound healing. Liu C; Wang Z; Wei X; Chen B; Luo Y Acta Biomater; 2021 Sep; 131():314-325. PubMed ID: 34256189 [TBL] [Abstract][Full Text] [Related]
18. 3D- Printed Poly(ε-caprolactone) Scaffold Integrated with Cell-laden Chitosan Hydrogels for Bone Tissue Engineering. Dong L; Wang SJ; Zhao XR; Zhu YF; Yu JK Sci Rep; 2017 Oct; 7(1):13412. PubMed ID: 29042614 [TBL] [Abstract][Full Text] [Related]
19. Hydrogels of agarose, and methacrylated gelatin and hyaluronic acid are more supportive for in vitro meniscus regeneration than three dimensional printed polycaprolactone scaffolds. Bahcecioglu G; Hasirci N; Bilgen B; Hasirci V Int J Biol Macromol; 2019 Feb; 122():1152-1162. PubMed ID: 30218727 [TBL] [Abstract][Full Text] [Related]
20. Tailored alginate/PCL-gelatin- Joo G; Park M; Park SS; Tripathi G; Lee BT Biomed Mater; 2022 May; 17(4):. PubMed ID: 35487207 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]