These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 35738988)

  • 1. Lung-Optimized Deep-Learning-Based Reconstruction for Ultralow-Dose CT.
    Goto M; Nagayama Y; Sakabe D; Emoto T; Kidoh M; Oda S; Nakaura T; Taguchi N; Funama Y; Takada S; Uchimura R; Hayashi H; Hatemura M; Kawanaka K; Hirai T
    Acad Radiol; 2023 Mar; 30(3):431-440. PubMed ID: 35738988
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Value of deep learning reconstruction at ultra-low-dose CT for evaluation of urolithiasis.
    Zhang G; Zhang X; Xu L; Bai X; Jin R; Xu M; Yan J; Jin Z; Sun H
    Eur Radiol; 2022 Sep; 32(9):5954-5963. PubMed ID: 35357541
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving image quality with super-resolution deep-learning-based reconstruction in coronary CT angiography.
    Nagayama Y; Emoto T; Kato Y; Kidoh M; Oda S; Sakabe D; Funama Y; Nakaura T; Hayashi H; Takada S; Uchimura R; Hatemura M; Tsujita K; Hirai T
    Eur Radiol; 2023 Dec; 33(12):8488-8500. PubMed ID: 37432405
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep learning-based reconstruction can improve the image quality of low radiation dose head CT.
    Nagayama Y; Iwashita K; Maruyama N; Uetani H; Goto M; Sakabe D; Emoto T; Nakato K; Shigematsu S; Kato Y; Takada S; Kidoh M; Oda S; Nakaura T; Hatemura M; Ueda M; Mukasa A; Hirai T
    Eur Radiol; 2023 May; 33(5):3253-3265. PubMed ID: 36973431
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Radiation Dose Reduction for 80-kVp Pediatric CT Using Deep Learning-Based Reconstruction: A Clinical and Phantom Study.
    Nagayama Y; Goto M; Sakabe D; Emoto T; Shigematsu S; Oda S; Tanoue S; Kidoh M; Nakaura T; Funama Y; Uchimura R; Takada S; Hayashi H; Hatemura M; Hirai T
    AJR Am J Roentgenol; 2022 Aug; 219(2):315-324. PubMed ID: 35195431
    [No Abstract]   [Full Text] [Related]  

  • 6. Combination of Deep Learning-Based Denoising and Iterative Reconstruction for Ultra-Low-Dose CT of the Chest: Image Quality and Lung-RADS Evaluation.
    Hata A; Yanagawa M; Yoshida Y; Miyata T; Tsubamoto M; Honda O; Tomiyama N
    AJR Am J Roentgenol; 2020 Dec; 215(6):1321-1328. PubMed ID: 33052702
    [No Abstract]   [Full Text] [Related]  

  • 7. Value of deep learning reconstruction of chest low-dose CT for image quality improvement and lung parenchyma assessment on lung window.
    Wang J; Sui X; Zhao R; Du H; Wang J; Wang Y; Qin R; Lu X; Ma Z; Xu Y; Jin Z; Song L; Song W
    Eur Radiol; 2024 Feb; 34(2):1053-1064. PubMed ID: 37581663
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Image quality comparison of lower extremity CTA between CT routine reconstruction algorithms and deep learning reconstruction.
    Zhang D; Mu C; Zhang X; Yan J; Xu M; Wang Y; Wang Y; Xue H; Chen Y; Jin Z
    BMC Med Imaging; 2023 Feb; 23(1):33. PubMed ID: 36800947
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Clinical acceptance of deep learning reconstruction for abdominal CT imaging: objective and subjective image quality and low-contrast detectability assessment.
    Bornet PA; Villani N; Gillet R; Germain E; Lombard C; Blum A; Gondim Teixeira PA
    Eur Radiol; 2022 May; 32(5):3161-3172. PubMed ID: 34989850
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Model-based iterative reconstruction technique for ultralow-dose computed tomography of the lung: a pilot study.
    Yamada Y; Jinzaki M; Tanami Y; Shiomi E; Sugiura H; Abe T; Kuribayashi S
    Invest Radiol; 2012 Aug; 47(8):482-9. PubMed ID: 22766910
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Radiation dose optimization potential of deep learning-based reconstruction for multiphase hepatic CT: A clinical and phantom study.
    Nagayama Y; Goto M; Sakabe D; Emoto T; Shigematsu S; Taguchi N; Maruyama N; Takada S; Uchimura R; Hayashi H; Kidoh M; Oda S; Nakaura T; Funama Y; Hatemura M; Hirai T
    Eur J Radiol; 2022 Jun; 151():110280. PubMed ID: 35381567
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of deep learning reconstruction of ultra-low-dose abdominal CT in the diagnosis of renal calculi.
    Zhang X; Zhang G; Xu L; Bai X; Zhang J; Xu M; Yan J; Zhang D; Jin Z; Sun H
    Insights Imaging; 2022 Oct; 13(1):163. PubMed ID: 36209195
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Image quality and radiologists' subjective acceptance using model-based iterative and deep learning reconstructions as adjuncts to ultrahigh-resolution CT in low-dose contrast-enhanced abdominopelvic CT: phantom and clinical pilot studies.
    Nishikawa M; Machida H; Shimizu Y; Kariyasu T; Morisaka H; Adachi T; Nakai T; Sakaguchi K; Saito S; Matsumoto S; Koyanagi M; Yokoyama K
    Abdom Radiol (NY); 2022 Feb; 47(2):891-902. PubMed ID: 34914007
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prospective evaluation of deep learning image reconstruction for Lung-RADS and automatic nodule volumetry on ultralow-dose chest CT.
    Yoo SJ; Park YS; Choi H; Kim DS; Goo JM; Yoon SH
    PLoS One; 2024; 19(2):e0297390. PubMed ID: 38386632
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Feasibility of Deep Learning-Based Reconstruction for Low-Tube-Voltage CT Angiography for Transcatheter Aortic Valve Implantation.
    Kojima T; Yamasaki Y; Matsuura Y; Mikayama R; Shirasaka T; Kondo M; Kamitani T; Kato T; Ishigami K; Yabuuchi H
    J Comput Assist Tomogr; 2024 Jan-Feb 01; 48(1):77-84. PubMed ID: 37574664
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Noise power spectrum properties of deep learning-based reconstruction and iterative reconstruction algorithms: Phantom and clinical study.
    Funama Y; Nakaura T; Hasegawa A; Sakabe D; Oda S; Kidoh M; Nagayama Y; Hirai T
    Eur J Radiol; 2023 Aug; 165():110914. PubMed ID: 37295358
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Superior objective and subjective image quality of deep learning reconstruction for low-dose abdominal CT imaging in comparison with model-based iterative reconstruction and filtered back projection.
    Tamura A; Mukaida E; Ota Y; Kamata M; Abe S; Yoshioka K
    Br J Radiol; 2021 Jul; 94(1123):20201357. PubMed ID: 34142867
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep-learning reconstruction for ultra-low-dose lung CT: Volumetric measurement accuracy and reproducibility of artificial ground-glass nodules in a phantom study.
    Mikayama R; Shirasaka T; Kojima T; Sakai Y; Yabuuchi H; Kondo M; Kato T
    Br J Radiol; 2022 Feb; 95(1130):20210915. PubMed ID: 34908478
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Image quality improvement with deep learning-based reconstruction on abdominal ultrahigh-resolution CT: A phantom study.
    Shirasaka T; Kojima T; Funama Y; Sakai Y; Kondo M; Mikayama R; Hamasaki H; Kato T; Ushijima Y; Asayama Y; Nishie A
    J Appl Clin Med Phys; 2021 Jul; 22(7):286-296. PubMed ID: 34159736
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep learning-based reconstruction may improve non-contrast cerebral CT imaging compared to other current reconstruction algorithms.
    Oostveen LJ; Meijer FJA; de Lange F; Smit EJ; Pegge SA; Steens SCA; van Amerongen MJ; Prokop M; Sechopoulos I
    Eur Radiol; 2021 Aug; 31(8):5498-5506. PubMed ID: 33693996
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.