These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 35739128)
1. Impact of interannual and multidecadal trends on methane-climate feedbacks and sensitivity. Cheng CH; Redfern SAT Nat Commun; 2022 Jun; 13(1):3592. PubMed ID: 35739128 [TBL] [Abstract][Full Text] [Related]
2. Interannual variation in methane emissions from tropical wetlands triggered by repeated El Niño Southern Oscillation. Zhu Q; Peng C; Ciais P; Jiang H; Liu J; Bousquet P; Li S; Chang J; Fang X; Zhou X; Chen H; Liu S; Lin G; Gong P; Wang M; Wang H; Xiang W; Chen J Glob Chang Biol; 2017 Nov; 23(11):4706-4716. PubMed ID: 28418083 [TBL] [Abstract][Full Text] [Related]
3. Methane Emissions from Wetlands in China and Their Climate Feedbacks in the 21st Century. Li T; Canadell JG; Yang XQ; Zhai P; Chao Q; Lu Y; Huang D; Sun W; Qin Z Environ Sci Technol; 2022 Sep; 56(17):12024-12035. PubMed ID: 35943239 [TBL] [Abstract][Full Text] [Related]
4. Isotopic signatures of methane emissions from tropical fires, agriculture and wetlands: the MOYA and ZWAMPS flights. ; Nisbet EG; Allen G; Fisher RE; France JL; Lee JD; Lowry D; Andrade MF; Bannan TJ; Barker P; Bateson P; Bauguitte SJ; Bower KN; Broderick TJ; Chibesakunda F; Cain M; Cozens AE; Daly MC; Ganesan AL; Jones AE; Lambakasa M; Lunt MF; Mehra A; Moreno I; Pasternak D; Palmer PI; Percival CJ; Pitt JR; Riddle AJ; Rigby M; Shaw JT; Stell AC; Vaughan AR; Warwick NJ; E Wilde S Philos Trans A Math Phys Eng Sci; 2022 Jan; 380(2215):20210112. PubMed ID: 34865533 [TBL] [Abstract][Full Text] [Related]
5. An observation-constrained assessment of the climate sensitivity and future trajectories of wetland methane emissions. Koffi EN; Bergamaschi P; Alkama R; Cescatti A Sci Adv; 2020 Apr; 6(15):eaay4444. PubMed ID: 32300649 [TBL] [Abstract][Full Text] [Related]
6. France JL; Fisher RE; Lowry D; Allen G; Andrade MF; Bauguitte SJ; Bower K; Broderick TJ; Daly MC; Forster G; Gondwe M; Helfter C; Hoyt AM; Jones AE; Lanoisellé M; Moreno I; Nisbet-Jones PBR; Oram D; Pasternak D; Pitt JR; Skiba U; Stephens M; Wilde SE; Nisbet EG Philos Trans A Math Phys Eng Sci; 2022 Jan; 380(2215):20200449. PubMed ID: 34865534 [TBL] [Abstract][Full Text] [Related]
7. The role of environmental driving factors in historical and projected carbon dynamics of wetland ecosystems in Alaska. Lyu Z; Genet H; He Y; Zhuang Q; McGuire AD; Bennett A; Breen A; Clein J; Euskirchen ES; Johnson K; Kurkowski T; Pastick NJ; Rupp TS; Wylie BK; Zhu Z Ecol Appl; 2018 Sep; 28(6):1377-1395. PubMed ID: 29808543 [TBL] [Abstract][Full Text] [Related]
8. Wetland emission and atmospheric sink changes explain methane growth in 2020. Peng S; Lin X; Thompson RL; Xi Y; Liu G; Hauglustaine D; Lan X; Poulter B; Ramonet M; Saunois M; Yin Y; Zhang Z; Zheng B; Ciais P Nature; 2022 Dec; 612(7940):477-482. PubMed ID: 36517714 [TBL] [Abstract][Full Text] [Related]
9. Climate-driven increase of natural wetland methane emissions offset by human-induced wetland reduction in China over the past three decades. Zhu Q; Peng C; Liu J; Jiang H; Fang X; Chen H; Niu Z; Gong P; Lin G; Wang M; Wang H; Yang Y; Chang J; Ge Y; Xiang W; Deng X; He JS Sci Rep; 2016 Nov; 6():38020. PubMed ID: 27892535 [TBL] [Abstract][Full Text] [Related]
10. Emerging role of wetland methane emissions in driving 21st century climate change. Zhang Z; Zimmermann NE; Stenke A; Li X; Hodson EL; Zhu G; Huang C; Poulter B Proc Natl Acad Sci U S A; 2017 Sep; 114(36):9647-9652. PubMed ID: 28827347 [TBL] [Abstract][Full Text] [Related]
11. Using global isotopic data to constrain the role of shale gas production in recent increases in atmospheric methane. Milkov AV; Schwietzke S; Allen G; Sherwood OA; Etiope G Sci Rep; 2020 Mar; 10(1):4199. PubMed ID: 32144290 [TBL] [Abstract][Full Text] [Related]
12. Cold season emissions dominate the Arctic tundra methane budget. Zona D; Gioli B; Commane R; Lindaas J; Wofsy SC; Miller CE; Dinardo SJ; Dengel S; Sweeney C; Karion A; Chang RY; Henderson JM; Murphy PC; Goodrich JP; Moreaux V; Liljedahl A; Watts JD; Kimball JS; Lipson DA; Oechel WC Proc Natl Acad Sci U S A; 2016 Jan; 113(1):40-5. PubMed ID: 26699476 [TBL] [Abstract][Full Text] [Related]
13. The positive net radiative greenhouse gas forcing of increasing methane emissions from a thawing boreal forest-wetland landscape. Helbig M; Chasmer LE; Kljun N; Quinton WL; Treat CC; Sonnentag O Glob Chang Biol; 2017 Jun; 23(6):2413-2427. PubMed ID: 27689625 [TBL] [Abstract][Full Text] [Related]
14. Large-scale controls of methanogenesis inferred from methane and gravity spaceborne data. Bloom AA; Palmer PI; Fraser A; Reay DS; Frankenberg C Science; 2010 Jan; 327(5963):322-5. PubMed ID: 20075250 [TBL] [Abstract][Full Text] [Related]
15. Deep peat warming increases surface methane and carbon dioxide emissions in a black spruce-dominated ombrotrophic bog. Gill AL; Giasson MA; Yu R; Finzi AC Glob Chang Biol; 2017 Dec; 23(12):5398-5411. PubMed ID: 28675635 [TBL] [Abstract][Full Text] [Related]
16. Role of the Terrestrial Biosphere in Atmospheric Chemistry and Climate. Steiner AL Acc Chem Res; 2020 Jul; 53(7):1260-1268. PubMed ID: 32589392 [TBL] [Abstract][Full Text] [Related]
17. Orbital and millennial-scale features of atmospheric CH4 over the past 800,000 years. Loulergue L; Schilt A; Spahni R; Masson-Delmotte V; Blunier T; Lemieux B; Barnola JM; Raynaud D; Stocker TF; Chappellaz J Nature; 2008 May; 453(7193):383-6. PubMed ID: 18480822 [TBL] [Abstract][Full Text] [Related]
18. Agricultural peatland restoration: effects of land-use change on greenhouse gas (CO2 and CH4) fluxes in the Sacramento-San Joaquin Delta. Knox SH; Sturtevant C; Matthes JH; Koteen L; Verfaillie J; Baldocchi D Glob Chang Biol; 2015 Feb; 21(2):750-65. PubMed ID: 25229180 [TBL] [Abstract][Full Text] [Related]