These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 3573923)

  • 1. Far-ultraviolet laser ablation of the cornea: photoacoustic studies.
    Srinivasan R; Dyer PE; Braren B
    Lasers Surg Med; 1987; 6(6):514-9. PubMed ID: 3573923
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Structure and dynamics of photo-acoustic shock-waves in 193 nm excimer laser photo-ablation of the cornea].
    Kermani O; Lubatschowski H
    Fortschr Ophthalmol; 1991; 88(6):748-53. PubMed ID: 1794797
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of corneal ablation efficiency using ultraviolet 213-nm solid state laser pulses.
    Dair GT; Pelouch WS; van Saarloos PP; Lloyd DJ; Linares SM; Reinholz F
    Invest Ophthalmol Vis Sci; 1999 Oct; 40(11):2752-6. PubMed ID: 10509676
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An acute light and electron microscopic study of ultraviolet 193-nm excimer laser corneal incisions.
    Berns MW; Liaw LH; Oliva A; Andrews JJ; Rasmussen RE; Kimel S
    Ophthalmology; 1988 Oct; 95(10):1422-33. PubMed ID: 3226690
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study of corneal ablation with picosecond laser pulses at 211 nm and 263 nm.
    Hu XH; Juhasz T
    Lasers Surg Med; 1996; 18(4):373-80. PubMed ID: 8732576
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Corneal ablations produced by the neodymium doped yttrium-lithium-fluoride picosecond laser.
    Brown DB; O'Brien WJ; Schultz RO
    Cornea; 1994 Nov; 13(6):471-8. PubMed ID: 7842703
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultraviolet solid-state laser (213-nm) photorefractive keratectomy. In vitro study.
    Ren Q; Simon G; Parel JM
    Ophthalmology; 1993 Dec; 100(12):1828-34. PubMed ID: 8259282
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ablation rate of human corneal epithelium and Bowman's layer with the excimer laser (193 nm).
    Seiler T; Kriegerowski M; Schnoy N; Bende T
    Refract Corneal Surg; 1990; 6(2):99-102. PubMed ID: 2248922
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of photoacoustic transients during pulsed laser ablation of the human temporal bone: an experimental model.
    Wong BJ; Dickinson MR; Berns MW; Neev J
    J Clin Laser Med Surg; 1996 Dec; 14(6):385-92. PubMed ID: 9467330
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultraviolet solid-state laser (213-nm) photorefractive keratectomy. In vivo study.
    Ren Q; Simon G; Legeais JM; Parel JM; Culbertson W; Shen J; Takesue Y; Savoldelli M
    Ophthalmology; 1994 May; 101(5):883-9. PubMed ID: 8190475
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Time and frequency resolved XeCl laser-induced mechanical transients in otic capsule bone.
    McCaughey RG; Wong BJ; Neev J; Dickinson MR
    Photomed Laser Surg; 2008 Feb; 26(1):31-6. PubMed ID: 18248159
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photoablation of gelatin with the free-electron laser between 2.7 and 6.7 microns.
    Jean B; Bende T
    J Refract Corneal Surg; 1994; 10(4):433-8. PubMed ID: 7528615
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Excimer laser ablation of the cornea and lens. Experimental studies.
    Puliafito CA; Steinert RF; Deutsch TF; Hillenkamp F; Dehm EJ; Adler CM
    Ophthalmology; 1985 Jun; 92(6):741-8. PubMed ID: 4034169
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The mechanism of ablation of corneal tissue by the neodymium doped yttrium-lithium-fluoride picosecond laser.
    Brown DB; O'Brien WJ; Schultz RO
    Cornea; 1994 Nov; 13(6):479-86. PubMed ID: 7842704
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solid state ultraviolet laser (213 nm) ablation of the cornea and synthetic collagen lenticules.
    Gailitis RP; Ren QS; Thompson KP; Lin JT; Waring GO
    Lasers Surg Med; 1991; 11(6):556-62. PubMed ID: 1753850
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Infrared laser surgery of the cornea. Studies with a Raman-shifted neodymium:YAG laser at 2.80 and 2.92 micron.
    Stern D; Puliafito CA; Dobi ET; Reidy WT
    Ophthalmology; 1988 Oct; 95(10):1434-41. PubMed ID: 3226691
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-speed photography of excimer laser ablation of the cornea.
    Puliafito CA; Stern D; Krueger RR; Mandel ER
    Arch Ophthalmol; 1987 Sep; 105(9):1255-9. PubMed ID: 3632443
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ablation of the cornea by using a low-energy excimer laser.
    Unkroth A; Kleinschmidt J; Ziegler W; Hofmann B; Jütte M
    Graefes Arch Clin Exp Ophthalmol; 1993 May; 231(5):303-7. PubMed ID: 8319921
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mid-infrared laser ablation of the cornea: a comparative study.
    Ren Q; Venugopalan V; Schomacker K; Deutsch TF; Flotte TJ; Puliafito CA; Birngruber R
    Lasers Surg Med; 1992; 12(3):274-81. PubMed ID: 1508021
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamics of the ultraviolet laser ablation of corneal tissue.
    Srinivasan R; Sutcliffe E
    Am J Ophthalmol; 1987 Mar; 103(3 Pt 2):470-1. PubMed ID: 3826266
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.