BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 35739239)

  • 1. Modelling of life cycle cost of conventional and alternative vehicles.
    Furch J; Konečný V; Krobot Z
    Sci Rep; 2022 Jun; 12(1):10661. PubMed ID: 35739239
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Review of the Fuel Saving, Life Cycle GHG Emission, and Ownership Cost Impacts of Lightweighting Vehicles with Different Powertrains.
    Luk JM; Kim HC; De Kleine R; Wallington TJ; MacLean HL
    Environ Sci Technol; 2017 Aug; 51(15):8215-8228. PubMed ID: 28714678
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Life cycle air emissions impacts and ownership costs of light-duty vehicles using natural gas as a primary energy source.
    Luk JM; Saville BA; MacLean HL
    Environ Sci Technol; 2015 Apr; 49(8):5151-60. PubMed ID: 25825338
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Environmental and human health impact of different powertrain passenger cars in a life cycle perspective. A focus on health risk and oxidative potential of particulate matter components.
    Sisani F; Di Maria F; Cesari D
    Sci Total Environ; 2022 Jan; 805():150171. PubMed ID: 34537714
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Life cycle water footprint of electric and internal combustion engine vehicles in China.
    Yang L; Chen H; Li H; Feng Y
    Environ Sci Pollut Res Int; 2023 Jul; 30(33):80442-80461. PubMed ID: 37300733
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Valuation of plug-in vehicle life-cycle air emissions and oil displacement benefits.
    Michalek JJ; Chester M; Jaramillo P; Samaras C; Shiau CS; Lave LB
    Proc Natl Acad Sci U S A; 2011 Oct; 108(40):16554-8. PubMed ID: 21949359
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A life-cycle comparison of alternative automobile fuels.
    MacLean HL; Lave LB; Lankey R; Joshi S
    J Air Waste Manag Assoc; 2000 Oct; 50(10):1769-79. PubMed ID: 11288305
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Should India Move toward Vehicle Electrification? Assessing Life-Cycle Greenhouse Gas and Criteria Air Pollutant Emissions of Alternative and Conventional Fuel Vehicles in India.
    Peshin T; Sengupta S; Azevedo IML
    Environ Sci Technol; 2022 Jul; 56(13):9569-9582. PubMed ID: 35696339
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How to reduce the greenhouse gas emissions and air pollution caused by light and heavy duty vehicles with battery-electric, fuel cell-electric and catenary trucks.
    Breuer JL; Samsun RC; Stolten D; Peters R
    Environ Int; 2021 Jul; 152():106474. PubMed ID: 33711760
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of the emission factors of air pollutants from gasoline, CNG, LPG and diesel fueled vehicles at idle speed.
    Aosaf MR; Wang Y; Du K
    Environ Pollut; 2022 Jul; 305():119296. PubMed ID: 35427677
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Life Cycle Air Emissions External Costs Assessment for Comparing Electric and Traditional Passenger Cars.
    Girardi P; Brambilla C; Mela G
    Integr Environ Assess Manag; 2020 Jan; 16(1):140-150. PubMed ID: 31502735
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characteristics of black carbon emissions from in-use light-duty passenger vehicles.
    Zheng X; Zhang S; Wu Y; Zhang KM; Wu X; Li Z; Hao J
    Environ Pollut; 2017 Dec; 231(Pt 1):348-356. PubMed ID: 28810204
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Method for in-use measurement and evaluation of the activity, fuel use, electricity use, and emissions of a plug-in hybrid diesel-electric school bus.
    Choi HW; Frey HC
    Environ Sci Technol; 2010 May; 44(9):3601-7. PubMed ID: 20380435
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The impact of ambient temperature and powertrains of SUVs on the environment in Slovakia during the use phase.
    Sečkár M; Schwarz M
    Environ Monit Assess; 2024 Jul; 196(8):704. PubMed ID: 38967806
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Current and Future United States Light-Duty Vehicle Pathways: Cradle-to-Grave Lifecycle Greenhouse Gas Emissions and Economic Assessment.
    Elgowainy A; Han J; Ward J; Joseck F; Gohlke D; Lindauer A; Ramsden T; Biddy M; Alexander M; Barnhart S; Sutherland I; Verduzco L; Wallington TJ
    Environ Sci Technol; 2018 Feb; 52(4):2392-2399. PubMed ID: 29298387
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In-use measurement of activity, energy use, and emissions of a plug-in hybrid electric vehicle.
    Graver BM; Frey HC; Choi HW
    Environ Sci Technol; 2011 Oct; 45(20):9044-51. PubMed ID: 21902202
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Life cycle CO
    Yu R; Cong L; Hui Y; Zhao D; Yu B
    Sci Total Environ; 2022 Jun; 826():154102. PubMed ID: 35218846
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Provincial Greenhouse Gas Emissions of Gasoline and Plug-in Electric Vehicles in China: Comparison from the Consumption-Based Electricity Perspective.
    Gan Y; Lu Z; He X; Hao C; Wang Y; Cai H; Wang M; Elgowainy A; Przesmitzki S; Bouchard J
    Environ Sci Technol; 2021 May; 55(10):6944-6956. PubMed ID: 33945267
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electric vehicles in China: emissions and health impacts.
    Ji S; Cherry CR; J Bechle M; Wu Y; Marshall JD
    Environ Sci Technol; 2012 Feb; 46(4):2018-24. PubMed ID: 22201325
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Comparative Study on the Routing Problem of Electric and Fuel Vehicles Considering Carbon Trading.
    Liao W; Liu L; Fu J
    Int J Environ Res Public Health; 2019 Aug; 16(17):. PubMed ID: 31461949
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.