These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 35739297)

  • 1. Global and seasonal variation of marine phosphonate metabolism.
    Lockwood S; Greening C; Baltar F; Morales SE
    ISME J; 2022 Sep; 16(9):2198-2212. PubMed ID: 35739297
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The genes and enzymes of phosphonate metabolism by bacteria, and their distribution in the marine environment.
    Villarreal-Chiu JF; Quinn JP; McGrath JW
    Front Microbiol; 2012; 3():19. PubMed ID: 22303297
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphate-limited ocean regions select for bacterial populations enriched in the carbon-phosphorus lyase pathway for phosphonate degradation.
    Sosa OA; Repeta DJ; DeLong EF; Ashkezari MD; Karl DM
    Environ Microbiol; 2019 Jul; 21(7):2402-2414. PubMed ID: 30972938
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative Metagenomics Highlight a Widespread Pathway Involved in Catabolism of Phosphonates in Marine and Terrestrial Serpentinizing Ecosystems.
    Frouin E; Lecoeuvre A; Armougom F; Schrenk MO; Erauso G
    mSystems; 2022 Aug; 7(4):e0032822. PubMed ID: 35913189
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microbial transformations in phosphonate biosynthesis and catabolism, and their importance in nutrient cycling.
    Chin JP; McGrath JW; Quinn JP
    Curr Opin Chem Biol; 2016 Apr; 31():50-7. PubMed ID: 26836350
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Methylphosphonic Acid Biosynthesis and Catabolism in Pelagic Archaea and Bacteria.
    Ulrich EC; Kamat SS; Hove-Jensen B; Zechel DL
    Methods Enzymol; 2018; 605():351-426. PubMed ID: 29909833
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphonate production by marine microbes: Exploring new sources and potential function.
    Acker M; Hogle SL; Berube PM; Hackl T; Coe A; Stepanauskas R; Chisholm SW; Repeta DJ
    Proc Natl Acad Sci U S A; 2022 Mar; 119(11):e2113386119. PubMed ID: 35254902
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Discovery of a New, Recurrent Enzyme in Bacterial Phosphonate Degradation: (
    Zangelmi E; Stanković T; Malatesta M; Acquotti D; Pallitsch K; Peracchi A
    Biochemistry; 2021 Apr; 60(15):1214-1225. PubMed ID: 33830741
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptomic-Guided Phosphonate Utilization Analysis Unveils Evidence of Clathrin-Mediated Endocytosis and Phospholipid Synthesis in the Model Diatom,
    Shu H; You Y; Wang H; Wang J; Li L; Ma J; Lin X
    mSystems; 2022 Dec; 7(6):e0056322. PubMed ID: 36317887
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphonate utilization by bacterial cultures and enrichments from environmental samples.
    Schowanek D; Verstraete W
    Appl Environ Microbiol; 1990 Apr; 56(4):895-903. PubMed ID: 2339877
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphate insensitive aminophosphonate mineralisation within oceanic nutrient cycles.
    Chin JP; Quinn JP; McGrath JW
    ISME J; 2018 Apr; 12(4):973-980. PubMed ID: 29339823
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Widespread known and novel phosphonate utilization pathways in marine bacteria revealed by functional screening and metagenomic analyses.
    Martinez A; Tyson GW; Delong EF
    Environ Microbiol; 2010 Jan; 12(1):222-38. PubMed ID: 19788654
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isolation and Characterization of Bacteria That Degrade Phosphonates in Marine Dissolved Organic Matter.
    Sosa OA; Repeta DJ; Ferrón S; Bryant JA; Mende DR; Karl DM; DeLong EF
    Front Microbiol; 2017; 8():1786. PubMed ID: 29085339
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Abc of Phosphonate Breakdown: A Mechanism for Bacterial Survival.
    Manav MC; Sofos N; Hove-Jensen B; Brodersen DE
    Bioessays; 2018 Nov; 40(11):e1800091. PubMed ID: 30198068
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The evolution of microbial phosphonate degradative pathways.
    Huang J; Su Z; Xu Y
    J Mol Evol; 2005 Nov; 61(5):682-90. PubMed ID: 16245012
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prokaryotic assemblages and metagenomes in pelagic zones of the South China Sea.
    Tseng CH; Chiang PW; Lai HC; Shiah FK; Hsu TC; Chen YL; Wen LS; Tseng CM; Shieh WY; Saeed I; Halgamuge S; Tang SL
    BMC Genomics; 2015 Mar; 16(1):219. PubMed ID: 25879764
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diverse, uncultivated bacteria and archaea underlying the cycling of dissolved protein in the ocean.
    Orsi WD; Smith JM; Liu S; Liu Z; Sakamoto CM; Wilken S; Poirier C; Richards TA; Keeling PJ; Worden AZ; Santoro AE
    ISME J; 2016 Sep; 10(9):2158-73. PubMed ID: 26953597
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genomic insights into potential interdependencies in microbial hydrocarbon and nutrient cycling in hydrothermal sediments.
    Dombrowski N; Seitz KW; Teske AP; Baker BJ
    Microbiome; 2017 Aug; 5(1):106. PubMed ID: 28835260
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An inventory of early branch points in microbial phosphonate biosynthesis.
    Li S; Horsman GP
    Microb Genom; 2022 Feb; 8(2):. PubMed ID: 35188456
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Abundance and composition of epiphytic bacterial and archaeal ammonia oxidizers of marine red and brown macroalgae.
    Trias R; García-Lledó A; Sánchez N; López-Jurado JL; Hallin S; Bañeras L
    Appl Environ Microbiol; 2012 Jan; 78(2):318-25. PubMed ID: 22081571
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.