BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 35739346)

  • 1. Tailoring fructooligosaccharides composition with engineered Zymomonas mobilis ZM4.
    Braga A; Gomes D; Rainha J; Cardoso BB; Amorim C; Silvério SC; Fernández-Lobato M; Rodrigues JL; Rodrigues LR
    Appl Microbiol Biotechnol; 2022 Jun; 106(12):4617-4626. PubMed ID: 35739346
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Yeast cultures expressing the Ffase from Schwanniomyces occidentalis, a simple system to produce the potential prebiotic sugar 6-kestose.
    Rodrigo-Frutos D; Piedrabuena D; Sanz-Aparicio J; Fernández-Lobato M
    Appl Microbiol Biotechnol; 2019 Jan; 103(1):279-289. PubMed ID: 30357454
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using global transcription machinery engineering (gTME) to improve ethanol tolerance of Zymomonas mobilis.
    Tan F; Wu B; Dai L; Qin H; Shui Z; Wang J; Zhu Q; Hu G; He M
    Microb Cell Fact; 2016 Jan; 15():4. PubMed ID: 26758018
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An influence of ethanol and temperature on products formation by different preparations of Zymomonas mobilis extracellular levansucrase.
    Vigants A; Upite D; Scherbaka R; Lukjanenko J; Ionina R
    Folia Microbiol (Praha); 2013 Jan; 58(1):75-80. PubMed ID: 22826021
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Disruption of the Zymomonas mobilis extracellular sucrase gene (sacC) improves levan production.
    Senthilkumar V; Rameshkumar N; Busby SJ; Gunasekaran P
    J Appl Microbiol; 2004; 96(4):671-6. PubMed ID: 15012804
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of hfq and sigE on the tolerance of Zymomonas mobilis ZM4 to furfural and acetic acid stresses.
    Nouri H; Moghimi H; Marashi SA; Elahi E
    PLoS One; 2020; 15(10):e0240330. PubMed ID: 33035245
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineered Zymomonas mobilis for salt tolerance using EZ-Tn5-based transposon insertion mutagenesis system.
    Wang JL; Wu B; Qin H; You Y; Liu S; Shui ZX; Tan FR; Wang YW; Zhu QL; Li YB; Ruan ZY; Ma KD; Dai LC; Hu GQ; He MX
    Microb Cell Fact; 2016 Jun; 15(1):101. PubMed ID: 27287016
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flocculating Zymomonas mobilis is a promising host to be engineered for fuel ethanol production from lignocellulosic biomass.
    Zhao N; Bai Y; Liu CG; Zhao XQ; Xu JF; Bai FW
    Biotechnol J; 2014 Mar; 9(3):362-71. PubMed ID: 24357469
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptive Laboratory Evolution and Metabolic Engineering of
    Huang J; Wang X; Chen X; Li H; Chen Y; Hu Z; Yang S
    ACS Synth Biol; 2023 Apr; 12(4):1297-1307. PubMed ID: 37036829
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Syntrophy of Crypthecodinium cohnii and immobilized Zymomonas mobilis for docosahexaenoic acid production from sucrose-containing substrates.
    Strazdina I; Klavins L; Galinina N; Shvirksts K; Grube M; Stalidzans E; Kalnenieks U
    J Biotechnol; 2021 Sep; 338():63-70. PubMed ID: 34280360
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catalytic activity of zymomonas mobilis extracellular "levan-levansucrase" complex in sucrose medium.
    Bekers M; Upite D; Kaminska E; Laukevics J; Ionina R; Vigants A
    Commun Agric Appl Biol Sci; 2003; 68(2 Pt A):321-4. PubMed ID: 15296187
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of the impact of a broad range of temperatures on the physiological and transcriptional profiles of Zymomonas mobilis ZM4 for high-temperature-tolerant recombinant strain development.
    Li R; Shen W; Yang Y; Du J; Li M; Yang S
    Biotechnol Biofuels; 2021 Jun; 14(1):146. PubMed ID: 34176507
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Industrial robustness linked to the gluconolactonase from Zymomonas mobilis.
    Alvin A; Kim J; Jeong GT; Tsang YF; Kwon EE; Neilan BA; Jeon YJ
    Appl Microbiol Biotechnol; 2017 Jun; 101(12):5089-5099. PubMed ID: 28341886
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cellulosic fuel ethanol: alternative fermentation process designs with wild-type and recombinant Zymomonas mobilis.
    Lawford HG; Rousseau JD
    Appl Biochem Biotechnol; 2003; 105 -108():457-69. PubMed ID: 12721468
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving Mobilization of Foreign DNA into Zymomonas mobilis Strain ZM4 by Removal of Multiple Restriction Systems.
    Lal PB; Wells F; Myers KS; Banerjee R; Guss AM; Kiley PJ
    Appl Environ Microbiol; 2021 Sep; 87(19):e0080821. PubMed ID: 34288704
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High tolerance and physiological mechanism of Zymomonas mobilis to phenolic inhibitors in ethanol fermentation of corncob residue.
    Gu H; Zhang J; Bao J
    Biotechnol Bioeng; 2015 Sep; 112(9):1770-82. PubMed ID: 25851269
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptomic and metabolomic profiling of Zymomonas mobilis during aerobic and anaerobic fermentations.
    Yang S; Tschaplinski TJ; Engle NL; Carroll SL; Martin SL; Davison BH; Palumbo AV; Rodriguez M; Brown SD
    BMC Genomics; 2009 Jan; 10():34. PubMed ID: 19154596
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Revitalizing the ethanologenic bacterium
    Hu M; Chen X; Huang J; Du J; Li M; Yang S
    Bioresour Bioprocess; 2021; 8(1):119. PubMed ID: 34873566
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development and characterization of acidic-pH-tolerant mutants of
    Yang Q; Yang Y; Tang Y; Wang X; Chen Y; Shen W; Zhan Y; Gao J; Wu B; He M; Chen S; Yang S
    Biotechnol Biofuels; 2020; 13():144. PubMed ID: 32817760
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The genome-scale metabolic network analysis of Zymomonas mobilis ZM4 explains physiological features and suggests ethanol and succinic acid production strategies.
    Lee KY; Park JM; Kim TY; Yun H; Lee SY
    Microb Cell Fact; 2010 Nov; 9():94. PubMed ID: 21092328
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.