These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 3573943)

  • 1. Enzymes and other biochemically active components of mycobacteria.
    Wheeler PR
    Lepr Rev; 1986 Dec; 57 Suppl 2():21-32. PubMed ID: 3573943
    [No Abstract]   [Full Text] [Related]  

  • 2. Iron acquisition strategies in mycobacteria.
    Fang Z; Sampson SL; Warren RM; Gey van Pittius NC; Newton-Foot M
    Tuberculosis (Edinb); 2015 Mar; 95(2):123-30. PubMed ID: 25636179
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Enzyme induction and metabolic regulation in mycobacteria. I. Induced utilization of nutritive substances in M. smegmatis].
    Iwainsky H; Sehrt I
    Zentralbl Bakteriol Orig; 1969; 209(4):523-36. PubMed ID: 5371647
    [No Abstract]   [Full Text] [Related]  

  • 4. Molybdenum enzymes and molybdenum cofactor in mycobacteria.
    Shi T; Xie J
    J Cell Biochem; 2011 Oct; 112(10):2721-8. PubMed ID: 21678480
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Respiratory chains of Mycobacterium smegmatis.
    Prasada Reddy TL; Suryanarayana Murthy P; Venkitasubramanian TA
    Indian J Biochem Biophys; 1975 Sep; 12(3):255-9. PubMed ID: 1221028
    [No Abstract]   [Full Text] [Related]  

  • 6. Iron acquisition, assimilation and regulation in mycobacteria.
    Banerjee S; Farhana A; Ehtesham NZ; Hasnain SE
    Infect Genet Evol; 2011 Jul; 11(5):825-38. PubMed ID: 21414421
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Specificity of exochelins for iron transport in three species of mycobacteria.
    Stephenson MC; Ratledge C
    J Gen Microbiol; 1980 Feb; 116(2):521-3. PubMed ID: 6989958
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Restoration of active transport of solutes and oxidative phosphorylation by naphthoquinones in irradiated membrane vesicles from Mycobacterium phlei.
    Lee SH; Sutherland TO; DeveÅ› R; Brodie AF
    Proc Natl Acad Sci U S A; 1980 Jan; 77(1):102-6. PubMed ID: 6928606
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of the quinone in oxidative phosphorylation. Evidence against carbon-ooxygen bond cleavage.
    Snyder CD; Rapoport H
    Biochemistry; 1968 Jun; 7(6):2318-26. PubMed ID: 5660056
    [No Abstract]   [Full Text] [Related]  

  • 10. Inability to detect mycobactin in mycobacteria-infected tissues suggests an alternative iron acquisition mechanism by mycobacteria in vivo.
    Lambrecht RS; Collins MT
    Microb Pathog; 1993 Mar; 14(3):229-38. PubMed ID: 8321124
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enzymes for purine synthesis and scavenging in pathogenic mycobacteria and their distribution in Mycobacterium leprae.
    Wheeler PR
    J Gen Microbiol; 1987 Nov; 133(11):3013-8. PubMed ID: 3328771
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative studies on some enzymes of atypical and other mycobacteria.
    Szymona O; Pinkiewicz H; Szumilo T
    Acta Microbiol Pol; 1967; 16(2):101-14. PubMed ID: 4168160
    [No Abstract]   [Full Text] [Related]  

  • 13. Enzymatic formation of a phosphorylated derivative of vitamin K.
    Watanabe T; Brodie AF
    Proc Natl Acad Sci U S A; 1966 Sep; 56(3):940-5. PubMed ID: 5230188
    [No Abstract]   [Full Text] [Related]  

  • 14. The role of the quinone in oxidative phosphorylation. Evidence against carbon-hydrogen bond cleavage.
    Di Mari SJ; Snyder CD; Rapoport H
    Biochemistry; 1968 Jun; 7(6):2301-17. PubMed ID: 5660055
    [No Abstract]   [Full Text] [Related]  

  • 15. Role of vitamin K in oxidative phosphorylation in mycobacteria.
    Murthy PS
    World Rev Nutr Diet; 1978; 31():210-5. PubMed ID: 735137
    [No Abstract]   [Full Text] [Related]  

  • 16. MmpL transporter-mediated export of cell-wall associated lipids and siderophores in mycobacteria.
    Chalut C
    Tuberculosis (Edinb); 2016 Sep; 100():32-45. PubMed ID: 27553408
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of N,N'-dicyclohexylcarbodiimide (DCCD) on electron transport particles of Mycobacterium phlei.
    Kalra VK; Brodie AF
    Arch Biochem Biophys; 1971 Dec; 147(2):653-9. PubMed ID: 4332727
    [No Abstract]   [Full Text] [Related]  

  • 18. Resolution and reconstitution of the succinoxidase pathway of Mycobacterium phlei.
    Kalra VK; Murti CR; Brodie AF
    Arch Biochem Biophys; 1971 Dec; 147(2):734-43. PubMed ID: 4332729
    [No Abstract]   [Full Text] [Related]  

  • 19. Iron uptake processes in Mycobacterium vaccae R877R, a mycobacterium lacking mycobactin.
    Messenger AJ; Hall RM; Ratledge C
    J Gen Microbiol; 1986 Mar; 132(3):845-52. PubMed ID: 2942636
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Action of mycobacteria on iron salts].
    Tison F; Tacquet A; Polspoel B
    Ann Inst Pasteur Lille; 1965; 16():37-9. PubMed ID: 5869286
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.