These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 35739471)

  • 1. Machine-learning algorithms based on personalized pathways for a novel predictive model for the diagnosis of hepatocellular carcinoma.
    Cheng B; Zhou P; Chen Y
    BMC Bioinformatics; 2022 Jun; 23(1):248. PubMed ID: 35739471
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Construction and Validation of a Prognostic Gene-Based Model for Overall Survival Prediction in Hepatocellular Carcinoma Using an Integrated Statistical and Bioinformatic Approach.
    Dessie EY; Tu SJ; Chiang HS; Tsai JJP; Chang YS; Chang JG; Ng KL
    Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33562824
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development and validation of a robust epithelial-mesenchymal transition (EMT)-related prognostic signature for hepatocellular carcinoma.
    Chen S; Zhao E
    Clin Res Hepatol Gastroenterol; 2021 Sep; 45(5):101587. PubMed ID: 33662631
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Establishment of diagnostic model and identification of diagnostic markers between liver cancer and cirrhosis based on multi-chip and machine learning.
    Yang T; Huang L; He J; Luo L; Guo W; Chen H; Jiang X; Huang L; Ma S; Liu X
    Clin Exp Pharmacol Physiol; 2024 Aug; 51(8):e13907. PubMed ID: 38965675
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of clinical significance and molecular characteristics of methionine metabolism and macrophage-related patterns in hepatocellular carcinoma based on machine learning.
    Wen D; Wang S; Yu J; Yu T; Liu Z; Li Y
    Cancer Biomark; 2024; 39(1):37-48. PubMed ID: 37522195
    [TBL] [Abstract][Full Text] [Related]  

  • 6. G6PD and machine learning algorithms as prognostic and diagnostic indicators of liver hepatocellular carcinoma.
    Li F; Wang B; Li H; Kong L; Zhu B
    BMC Cancer; 2024 Jan; 24(1):157. PubMed ID: 38297250
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly accurate diagnosis of papillary thyroid carcinomas based on personalized pathways coupled with machine learning.
    Park KS; Kim SH; Oh JH; Kim SY
    Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33341874
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DNA methylation biomarkers for diagnosis of primary liver cancer and distinguishing hepatocellular carcinoma from intrahepatic cholangiocarcinoma.
    Bai Y; Tong W; Xie F; Zhu L; Wu H; Shi R; Wang L; Yang L; Liu Z; Miao F; Zhao Q; Zhang Y
    Aging (Albany NY); 2021 Jul; 13(13):17592-17606. PubMed ID: 34237708
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Machine-learning analysis of contrast-enhanced CT radiomics predicts recurrence of hepatocellular carcinoma after resection: A multi-institutional study.
    Ji GW; Zhu FP; Xu Q; Wang K; Wu MY; Tang WW; Li XC; Wang XH
    EBioMedicine; 2019 Dec; 50():156-165. PubMed ID: 31735556
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Normal tissue adjacent to tumor expression profile analysis developed and validated a prognostic model based on Hippo-related genes in hepatocellular carcinoma.
    Pan Q; Qin F; Yuan H; He B; Yang N; Zhang Y; Ren H; Zeng Y
    Cancer Med; 2021 May; 10(9):3139-3152. PubMed ID: 33818013
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diagnosis of hepatocellular carcinoma based on salivary protein glycopatterns and machine learning algorithms.
    Tang Z; Zhang F; Wang Y; Zhang C; Li X; Yin M; Shu J; Yu H; Liu X; Guo Y; Li Z
    Clin Chem Lab Med; 2022 Nov; 60(12):1963-1973. PubMed ID: 36113983
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Machine Learning Prediction Models for Diagnosing Hepatocellular Carcinoma with HCV-related Chronic Liver Disease.
    Hashem S; ElHefnawi M; Habashy S; El-Adawy M; Esmat G; Elakel W; Abdelazziz AO; Nabeel MM; Abdelmaksoud AH; Elbaz TM; Shousha HI
    Comput Methods Programs Biomed; 2020 Nov; 196():105551. PubMed ID: 32580053
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Machine learning algorithms based on proteomic data mining accurately predicting the recurrence of hepatitis B-related hepatocellular carcinoma.
    Feng G; He N; Xia HH; Mi M; Wang K; Byrne CD; Targher G; Yuan HY; Zhang XL; Zheng MH; Ye F
    J Gastroenterol Hepatol; 2022 Nov; 37(11):2145-2153. PubMed ID: 35816347
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a machine learning-based model for predicting risk of early postoperative recurrence of hepatocellular carcinoma.
    Zhang YB; Yang G; Bu Y; Lei P; Zhang W; Zhang DY
    World J Gastroenterol; 2023 Nov; 29(43):5804-5817. PubMed ID: 38074914
    [TBL] [Abstract][Full Text] [Related]  

  • 15. N-glycan fingerprint predicts alpha-fetoprotein negative hepatocellular carcinoma: A large-scale multicenter study.
    Huang C; Fang M; Feng H; Liu L; Li Y; Xu X; Wang H; Wang Y; Tong L; Zhou L; Gao C
    Int J Cancer; 2021 Aug; 149(3):717-727. PubMed ID: 33729545
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Construction of a lipid metabolism-related risk model for hepatocellular carcinoma by single cell and machine learning analysis.
    Mou L; Pu Z; Luo Y; Quan R; So Y; Jiang H
    Front Immunol; 2023; 14():1036562. PubMed ID: 36936948
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development and validation of an ensemble machine-learning model for predicting early mortality among patients with bone metastases of hepatocellular carcinoma.
    Long Z; Yi M; Qin Y; Ye Q; Che X; Wang S; Lei M
    Front Oncol; 2023; 13():1144039. PubMed ID: 36890826
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Serum small extracellular vesicle-derived LINC00853 as a novel diagnostic marker for early hepatocellular carcinoma.
    Kim SS; Baek GO; Ahn HR; Sung S; Seo CW; Cho HJ; Nam SW; Cheong JY; Eun JW
    Mol Oncol; 2020 Oct; 14(10):2646-2659. PubMed ID: 32525601
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Machine learning algorithms outperform conventional regression models in predicting development of hepatocellular carcinoma.
    Singal AG; Mukherjee A; Elmunzer BJ; Higgins PD; Lok AS; Zhu J; Marrero JA; Waljee AK
    Am J Gastroenterol; 2013 Nov; 108(11):1723-30. PubMed ID: 24169273
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification and Validation of a Novel Six-Gene Expression Signature for Predicting Hepatocellular Carcinoma Prognosis.
    Yan Z; He M; He L; Wei L; Zhang Y
    Front Immunol; 2021; 12():723271. PubMed ID: 34925311
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.