These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 35739694)

  • 1. Genotoxic effects of chlorinated disinfection by-products of 1,3-diphenylguanidine (DPG): Cell-based in-vitro testing and formation potential during water disinfection.
    Marques Dos Santos M; Cheriaux C; Jia S; Thomas M; Gallard H; Croué JP; Carato P; Snyder SA
    J Hazard Mater; 2022 Aug; 436():129114. PubMed ID: 35739694
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chlorination and bromination of 1,3-diphenylguanidine and 1,3-di-o-tolylguanidine: Kinetics, transformation products and toxicity assessment.
    Sieira BJ; Montes R; Touffet A; Rodil R; Cela R; Gallard H; Quintana JB
    J Hazard Mater; 2020 Mar; 385():121590. PubMed ID: 31784125
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chlorination of oxybenzone: Kinetics, transformation, disinfection byproducts formation, and genotoxicity changes.
    Zhang S; Wang X; Yang H; Xie YF
    Chemosphere; 2016 Jul; 154():521-527. PubMed ID: 27085067
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genotoxicity of drinking water treated with different disinfectants and effects of disinfection conditions detected by umu-test.
    Nie X; Liu W; Zhang L; Liu Q
    J Environ Sci (China); 2017 Jun; 56():36-44. PubMed ID: 28571868
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Occurrence, influencing factors, toxicity, regulations, and abatement approaches for disinfection by-products in chlorinated drinking water: A comprehensive review.
    Kali S; Khan M; Ghaffar MS; Rasheed S; Waseem A; Iqbal MM; Bilal Khan Niazi M; Zafar MI
    Environ Pollut; 2021 Jul; 281():116950. PubMed ID: 33819670
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toxic impact of bromide and iodide on drinking water disinfected with chlorine or chloramines.
    Yang Y; Komaki Y; Kimura SY; Hu HY; Wagner ED; Mariñas BJ; Plewa MJ
    Environ Sci Technol; 2014 Oct; 48(20):12362-9. PubMed ID: 25222908
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water: a review and roadmap for research.
    Richardson SD; Plewa MJ; Wagner ED; Schoeny R; Demarini DM
    Mutat Res; 2007; 636(1-3):178-242. PubMed ID: 17980649
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioanalytical and chemical assessment of the disinfection by-product formation potential: role of organic matter.
    Farré MJ; Day S; Neale PA; Stalter D; Tang JY; Escher BI
    Water Res; 2013 Sep; 47(14):5409-21. PubMed ID: 23866154
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formation of metastable disinfection byproducts during free and combined aspartic acid chlorination: Effect of peptide bonds and impact on toxicity.
    Yu Y; Reckhow DA
    Water Res; 2020 Jan; 168():115131. PubMed ID: 31622913
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The impact of iodinated X-ray contrast agents on formation and toxicity of disinfection by-products in drinking water.
    Jeong CH; Machek EJ; Shakeri M; Duirk SE; Ternes TA; Richardson SD; Wagner ED; Plewa MJ
    J Environ Sci (China); 2017 Aug; 58():173-182. PubMed ID: 28774606
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Removal of disinfection byproduct precursors and reduction in additive toxicity of chlorinated and chloraminated waters by ozonation and up-flow biological activated carbon process.
    Chen H; Lin T; Chen W; Tao H; Xu H
    Chemosphere; 2019 Feb; 216():624-632. PubMed ID: 30391883
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment, modeling and optimization of parameters affecting the formation of disinfection by-products in water.
    Gougoutsa C; Christophoridis C; Zacharis CK; Fytianos K
    Environ Sci Pollut Res Int; 2016 Aug; 23(16):16620-30. PubMed ID: 27178297
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrophobic organic compounds in drinking water reservoirs: Toxic effects of chlorination and protective effects of dietary antioxidants against disinfection by-products.
    Wu B; Zhang Y; Hong H; Hu M; Liu H; Chen X; Liang Y
    Water Res; 2019 Dec; 166():115041. PubMed ID: 31536888
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation and control of disinfection byproducts and toxicity during reclaimed water chlorination: A review.
    Du Y; Lv XT; Wu QY; Zhang DY; Zhou YT; Peng L; Hu HY
    J Environ Sci (China); 2017 Aug; 58():51-63. PubMed ID: 28774626
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of chlorinated drinking water on the xenobiotic metabolism in Cyprinus carpio treated with samples from two Italian municipal networks.
    Cirillo S; Canistro D; Vivarelli F; Paolini M
    Environ Sci Pollut Res Int; 2016 Sep; 23(18):18777-88. PubMed ID: 27316649
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transformation pathways and acute toxicity variation of 4-hydroxyl benzophenone in chlorination disinfection process.
    Liu W; Wei D; Liu Q; Du Y
    Chemosphere; 2016 Jul; 154():491-498. PubMed ID: 27085063
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Derivates variation of phenylalanine as a model disinfection by-product precursor during long term chlorination and chloramination.
    Zhou K; Ye S; Yu Q; Chen J; Yong P; Ma X; Li Q; Dietrich AM
    Sci Total Environ; 2021 Jun; 771():144885. PubMed ID: 33736131
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation of toxic iodinated disinfection by-products from compounds used in medical imaging.
    Duirk SE; Lindell C; Cornelison CC; Kormos J; Ternes TA; Attene-Ramos M; Osiol J; Wagner ED; Plewa MJ; Richardson SD
    Environ Sci Technol; 2011 Aug; 45(16):6845-54. PubMed ID: 21761849
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of silver nanoparticles and chlorine reaction time on the regulated and emerging disinfection by-products formation.
    Na-Phatthalung W; Keaonaborn D; Jaichuedee J; Keawchouy S; Sinyoung S; Musikavong C
    Environ Pollut; 2022 Jan; 292(Pt B):118400. PubMed ID: 34688725
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of Pre-Oxidation on Haloacetonitrile and Trichloronitromethane Formation during Subsequent Chlorination of Nitrogenous Organic Compounds.
    Wang A; Lin C; Shen Z; Liu Z; Xu H; Cheng J; Wen X
    Int J Environ Res Public Health; 2020 Feb; 17(3):. PubMed ID: 32045988
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.