These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 35739699)

  • 1. Mesoscale evaluation of oil submerging and floating processes during marine oil spill response: Effects of dispersant on submerging stability and the associated mechanism.
    Fu H; Li H; Bao M; Liu Y; Wei L; Ju L; Cao R; Li Y
    J Hazard Mater; 2022 Aug; 436():129153. PubMed ID: 35739699
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combined effects of chemical dispersant and suspended minerals on the dispersion process of spilled oil.
    Li W; Wang W; Qi Y; Qi Z; Xiong D
    J Environ Manage; 2023 Sep; 341():118110. PubMed ID: 37150165
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent advances in chemical and biological degradation of spilled oil: A review of dispersants application in the marine environment.
    Zhu Z; Merlin F; Yang M; Lee K; Chen B; Liu B; Cao Y; Song X; Ye X; Li QK; Greer CW; Boufadel MC; Isaacman L; Zhang B
    J Hazard Mater; 2022 Aug; 436():129260. PubMed ID: 35739779
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biosurfactant-modified palygorskite clay as solid-stabilizers for effective oil spill dispersion.
    Chen D; Wang A; Li Y; Hou Y; Wang Z
    Chemosphere; 2019 Jul; 226():1-7. PubMed ID: 30908963
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oil spill dispersants: boon or bane?
    Prince RC
    Environ Sci Technol; 2015 Jun; 49(11):6376-84. PubMed ID: 25938731
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of chemical dispersant on the surface properties of kaolin and aggregation with spilled oil.
    Li W; Yu Y; Xiong D; Qi Z; Fu S; Yu X
    Environ Sci Pollut Res Int; 2022 Apr; 29(20):30496-30506. PubMed ID: 35000158
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A protocol for assessing the effectiveness of oil spill dispersants in stimulating the biodegradation of oil.
    Prince RC; Butler JD
    Environ Sci Pollut Res Int; 2014; 21(16):9506-10. PubMed ID: 23943003
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The formation process and responsive impacts of single oil droplet in submerged process.
    Li H; Meng L; Shen T; Zhang J; Bao M; Sun P
    Mar Pollut Bull; 2017 Nov; 124(1):139-146. PubMed ID: 28754572
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metagenomic and Metatranscriptomic Responses of Chemical Dispersant Application during a Marine Dilbit Spill.
    Cao Y; Zhang B; Greer CW; Lee K; Cai Q; Song X; Tremblay J; Zhu Z; Dong G; Chen B
    Appl Environ Microbiol; 2022 Mar; 88(5):e0215121. PubMed ID: 35020455
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Attachment of a hydrophobically modified biopolymer at the oil-water interface in the treatment of oil spills.
    Venkataraman P; Tang J; Frenkel E; McPherson GL; He J; Raghavan SR; Kolesnichenko V; Bose A; John VT
    ACS Appl Mater Interfaces; 2013 May; 5(9):3572-80. PubMed ID: 23527784
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep remediation of oil spill based on the dispersion and photocatalytic degradation of biosurfactant-modified TiO
    Shi Z; Li Y; Dong L; Guan Y; Bao M
    Chemosphere; 2021 Oct; 281():130744. PubMed ID: 34029969
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of mixing energy and dispersant dosage on oil dispersion and sedimentation with microplastics in the marine environment.
    Yu X; Qi Z; Xiong D; An Y; Gao H; Yang M; Liu Z
    Mar Pollut Bull; 2023 Oct; 195():115542. PubMed ID: 37714077
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of physical parameters and chemical dispersant on the formation of oil-particle aggregates (OPAs) in marine environments.
    Yu Y; Qi Z; Li W; Fu S; Yu X; Xiong D
    Mar Pollut Bull; 2019 Nov; 148():66-74. PubMed ID: 31422305
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The enhanced stability and biodegradation of dispersed crude oil droplets by Xanthan Gum as an additive of chemical dispersant.
    Wang A; Li Y; Yang X; Bao M; Cheng H
    Mar Pollut Bull; 2017 May; 118(1-2):275-280. PubMed ID: 28283177
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A probabilistic model of decision making regarding the use of chemical dispersants to combat oil spills in the German Bight.
    Liu Z; Callies U
    Water Res; 2020 Feb; 169():115196. PubMed ID: 31670089
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a dispersibility assessment kit for use on oil spill response vessels.
    Coelho GM; Slaughter AG; Liu R; Boufadel MC; Broje V
    Mar Pollut Bull; 2021 Sep; 170():112665. PubMed ID: 34186450
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development, formulation and optimization of a novel biocompatible ionic liquids dispersant for the effective oil spill remediation.
    Baharuddin SH; Mustahil NA; Reddy AVB; Abdullah AA; Mutalib MIA; Moniruzzaman M
    Chemosphere; 2020 Jun; 249():126125. PubMed ID: 32058133
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A critical review of marine snow in the context of oil spills and oil spill dispersant treatment with focus on the Deepwater Horizon oil spill.
    Brakstad OG; Lewis A; Beegle-Krause CJ
    Mar Pollut Bull; 2018 Oct; 135():346-356. PubMed ID: 30301046
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shrimp-waste based dispersant as oil spill treating agent: Biodegradation of dispersant and dispersed oil.
    Song X; Zhang B; Cao Y; Liu B; Chen B
    J Hazard Mater; 2022 Oct; 439():129617. PubMed ID: 35872457
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation and sedimentation of oil-mineral aggregates in the presence of chemical dispersant.
    Li W; Qi Z; Xiong D; Wu Y; Wang W; Qi Y; Guo J
    Environ Sci Process Impacts; 2023 Dec; 25(12):1937-1944. PubMed ID: 37786335
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.