These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 35739706)

  • 21. Study on the occurrence of typical heavy metals in drinking water and corrosion scales in a large community in northern China.
    Zhang S; Tian Y; Guo H; Liu R; He N; Li Z; Zhao W
    Chemosphere; 2022 Mar; 290():133145. PubMed ID: 34921856
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Influence of EPS on silicate corrosion inhibition for copper pipe in soft water].
    Li SY
    Huan Jing Ke Xue; 2008 Oct; 29(10):2846-9. PubMed ID: 19143383
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Drinking water quality and formation of biofilms in an office building during its first year of operation, a full scale study.
    Inkinen J; Kaunisto T; Pursiainen A; Miettinen IT; Kusnetsov J; Riihinen K; Keinänen-Toivola MM
    Water Res; 2014 Feb; 49():83-91. PubMed ID: 24317021
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of pipe corrosion scales on chlorine dioxide consumption in drinking water distribution systems.
    Zhang Z; Stout JE; Yu VL; Vidic R
    Water Res; 2008 Jan; 42(1-2):129-36. PubMed ID: 17884130
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Unraveling the Causes of Excess Lead in Drinking Water Supply Systems of Densely Populated High-Rise Buildings in Hong Kong.
    Chan SN; Chang L; Choi KW; Lee JHW; Fawell JK; Kwok KYT
    Environ Sci Technol; 2020 Nov; 54(22):14322-14333. PubMed ID: 33142055
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Increasing chloride in rivers of the conterminous U.S. and linkages to potential corrosivity and lead action level exceedances in drinking water.
    Stets EG; Lee CJ; Lytle DA; Schock MR
    Sci Total Environ; 2018 Feb; 613-614():1498-1509. PubMed ID: 28797521
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Study of the long-term impacts of treatments on lead release from full and partially replaced harvested lead service lines.
    Doré E; Deshommes E; Laroche L; Nour S; Prévost M
    Water Res; 2019 Feb; 149():566-577. PubMed ID: 30508757
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Manganese release from corrosion products of cast iron pipes in drinking water distribution systems: Effect of water temperature, pH, alkalinity, SO
    Zhang S; Tian Y; Guo Y; Shan J; Liu R
    Chemosphere; 2021 Jan; 262():127904. PubMed ID: 32799153
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evaluation of lead release potential of new premise plumbing materials.
    Lei IL; Ng DQ; Sable SS; Lin YP
    Environ Sci Pollut Res Int; 2018 Oct; 25(28):27971-27981. PubMed ID: 30066071
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Factors affecting lead release in sodium silicate-treated partial lead service line replacements.
    Zhou E; Payne SJ; Hofmann R; Andrews RC
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2015; 50(9):922-30. PubMed ID: 26061205
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Study on electrochemical reduction mechanisms of iron oxides in pipe scale in drinking water distribution system.
    Zhao L; Liu D; Zhang H; Wang J; Zhang X; Liu S; Chen C
    Water Res; 2023 Mar; 231():119597. PubMed ID: 36702021
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Lead pollution of drinking water in lower Saxony from corrosion of pipe materials].
    Zietz BP; Lass J; Dunkelberg H; Suchenwirth R
    Gesundheitswesen; 2009 May; 71(5):265-74. PubMed ID: 19387929
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nitrification in premise plumbing: role of phosphate, pH and pipe corrosion.
    Zhang Y; Griffin A; Edwards M
    Environ Sci Technol; 2008 Jun; 42(12):4280-4. PubMed ID: 18605545
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Metal-release potential from iron corrosion scales under stagnant and active flow, and varying water quality conditions.
    Li M; Wang Y; Liu Z; Sha Y; Korshin GV; Chen Y
    Water Res; 2020 May; 175():115675. PubMed ID: 32155486
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Considering a Utility-Centric Framework Based on "Minimum Orthophosphate" Criteria for Mitigation of Elevated Cuprosolvency in Drinking Water.
    Kriss RB; Smith E; Byrd G; Schock M; Edwards MA
    Environ Sci Technol; 2024 Mar; 58(12):5606-5615. PubMed ID: 38470122
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Co-occurrence profiles of trace elements in potable water systems: a case study.
    Andra SS; Makris KC; Charisiadis P; Costa CN
    Environ Monit Assess; 2014 Nov; 186(11):7307-20. PubMed ID: 25037966
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Multi-technique approach to assess the effects of microbial biofilms involved in copper plumbing corrosion.
    Vargas IT; Alsina MA; Pavissich JP; Jeria GA; Pastén PA; Walczak M; Pizarro GE
    Bioelectrochemistry; 2014 Jun; 97():15-22. PubMed ID: 24355512
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Selective dissolution of zinc and lead from duplex β-phase brasses in low and high conductivity water.
    Tsai MH; Chao SJ; Luo CL; Hua LC; Hu CC; Mahata BK; Huang C
    Chemosphere; 2024 May; 355():141835. PubMed ID: 38552799
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Behaviors and mechanisms of microbially-induced corrosion in metal-based water supply pipelines: A review.
    Song X; Zhang G; Zhou Y; Li W
    Sci Total Environ; 2023 Oct; 895():165034. PubMed ID: 37355127
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In Situ Monitoring of Pb
    Ma X; Armas SM; Soliman M; Lytle DA; Chumbimuni-Torres K; Tetard L; Lee WH
    Environ Sci Technol; 2018 Feb; 52(4):2126-2133. PubMed ID: 29376323
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.