These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 35739742)
41. Recycling of Wastes Plastics and Tires from Automotive Industry. Čabalová I; Ház A; Krilek J; Bubeníková T; Melicherčík J; Kuvik T Polymers (Basel); 2021 Jul; 13(13):. PubMed ID: 34279354 [TBL] [Abstract][Full Text] [Related]
42. Catalytic co-pyrolysis behaviors, product characteristics and kinetics of rural solid waste and chlorella vulgaris. Tang F; Yu Z; Li Y; Chen L; Ma X Bioresour Technol; 2020 Mar; 299():122636. PubMed ID: 31881438 [TBL] [Abstract][Full Text] [Related]
43. Kinetic and volatile products study of micron-sized PMMA waste pyrolysis using thermogravimetry and Fourier transform infrared analysis. Chen R; Xu M Waste Manag; 2020 Jul; 113():51-61. PubMed ID: 32505975 [TBL] [Abstract][Full Text] [Related]
44. Mechanistic insights into catalysis of in-situ iron on pyrolysis of waste printed circuit boards: Comparative study of kinetics, products, and reaction mechanism. Liu J; Wang H; Zhang W; Wang T; Mei M; Chen S; Li J J Hazard Mater; 2022 Jun; 431():128612. PubMed ID: 35259695 [TBL] [Abstract][Full Text] [Related]
45. Pyrolysis Kinetic Behaviour of Glass Fibre-Reinforced Epoxy Resin Composites Using Linear and Nonlinear Isoconversional Methods. Yousef S; Eimontas J; Striūgas N; Praspaliauskas M; Abdelnaby MA Polymers (Basel); 2021 May; 13(10):. PubMed ID: 34064980 [TBL] [Abstract][Full Text] [Related]
46. Influences and mechanisms of pyrolytic conditions on recycling BTX products from passenger car waste tires. Zheng D; Cheng J; Wang X; Yu G; Xu R; Dai C; Liu N; Wang N; Chen B Waste Manag; 2023 Sep; 169():196-207. PubMed ID: 37453307 [TBL] [Abstract][Full Text] [Related]
47. Investigation of Synergistic Effects and Kinetics on Co-Pyrolysis of Shujaa Aldeen A; Wang J; Zhang B; Tian S; Xu Z; Zhang H Int J Environ Res Public Health; 2022 Jun; 19(12):. PubMed ID: 35742352 [TBL] [Abstract][Full Text] [Related]
48. Slow pyrolysis characteristics of bamboo subfamily evaluated through kinetics and evolved gases analysis. Zhao R; Wang X; Liu L; Li P; Tian L Bioresour Technol; 2019 Oct; 289():121674. PubMed ID: 31247527 [TBL] [Abstract][Full Text] [Related]
49. Effect of CaO on Pyrolysis Products and Reaction Mechanisms of a Corn Stover. Wang Q; Zhang X; Sun S; Wang Z; Cui D ACS Omega; 2020 May; 5(18):10276-10287. PubMed ID: 32426584 [TBL] [Abstract][Full Text] [Related]
50. Pyrolysis dynamics of two medical plastic wastes: Drivers, behaviors, evolved gases, reaction mechanisms, and pathways. Ding Z; Chen H; Liu J; Cai H; Evrendilek F; Buyukada M J Hazard Mater; 2021 Jan; 402():123472. PubMed ID: 32731115 [TBL] [Abstract][Full Text] [Related]
51. Thermal and catalytic slow pyrolysis of Calophyllum inophyllum fruit shell. Alagu RM; Sundaram EG; Natarajan E Bioresour Technol; 2015 Oct; 193():463-8. PubMed ID: 26162524 [TBL] [Abstract][Full Text] [Related]
52. The effect of biomass addition on pyrolysis characteristics and gas emission of coal gangue by multi-component reaction model and TG-FTIR-MS. Bi H; Ni Z; Tian J; Wang C; Jiang C; Zhou W; Bao L; Sun H; Lin Q Sci Total Environ; 2021 Dec; 798():149290. PubMed ID: 34340093 [TBL] [Abstract][Full Text] [Related]
53. TG-FTIR study on urea-formaldehyde resin residue during pyrolysis and combustion. Jiang X; Li C; Chi Y; Yan J J Hazard Mater; 2010 Jan; 173(1-3):205-10. PubMed ID: 19735979 [TBL] [Abstract][Full Text] [Related]
54. Effect of lime mud on the reaction kinetics and thermodynamics of biomass pyrolysis. Li H; Zhou N; Dai L; Cheng Y; Cobb K; Chen P; Ruan R Bioresour Technol; 2020 Aug; 310():123475. PubMed ID: 32402989 [TBL] [Abstract][Full Text] [Related]
55. Bioenergy potential of Wolffia arrhiza appraised through pyrolysis, kinetics, thermodynamics parameters and TG-FTIR-MS study of the evolved gases. Ahmad MS; Mehmood MA; Liu CG; Tawab A; Bai FW; Sakdaronnarong C; Xu J; Rahimuddin SA; Gull M Bioresour Technol; 2018 Apr; 253():297-303. PubMed ID: 29413995 [TBL] [Abstract][Full Text] [Related]
56. Catalytic pyrolysis of tire waste: Impacts of biochar catalyst on product evolution. Chao L; Zhang C; Zhang L; Gholizadeh M; Hu X Waste Manag; 2020 Oct; 116():9-21. PubMed ID: 32781409 [TBL] [Abstract][Full Text] [Related]
57. Pyrolysis and Oxidation of Waste Tire Oil: Analysis of Evolved Gases. Abdul Jameel AG; Alquaity ABS; Islam KO; Pasha AA; Khan S; Nemitallah MA; Ahmed U ACS Omega; 2022 Jun; 7(25):21574-21582. PubMed ID: 35785323 [TBL] [Abstract][Full Text] [Related]
58. Characterization and analysis of condensates and non-condensable gases from furfural residue via fast pyrolysis in a bubbling fluidized bed reactor. Liu Y; Song Y; Ran C; Ali Siyal A; Jiang Z; Chtaeva P; Deng Z; Zhang T; Fu J; Ao W; Zhou C; Li X; Wang L; Dai J Waste Manag; 2021 Apr; 125():77-86. PubMed ID: 33677181 [TBL] [Abstract][Full Text] [Related]
59. Catalytic co-pyrolysis behaviors and kinetics of camellia shell and take-out solid waste using pyrolyzer - gas chromatography/mass spectrometry and thermogravimetric analyzer. Deng T; Yu Z; Zhang X; Zhang Y; Chen L; Ma X Bioresour Technol; 2020 Feb; 297():122419. PubMed ID: 31761629 [TBL] [Abstract][Full Text] [Related]
60. Value-added organonitrogen chemicals evolution from the pyrolysis of chitin and chitosan. Liu C; Zhang H; Xiao R; Wu S Carbohydr Polym; 2017 Jan; 156():118-124. PubMed ID: 27842805 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]