These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 35739791)

  • 41. Biodegradation of marine oil spills in the Arctic with a Greenland perspective.
    Vergeynst L; Wegeberg S; Aamand J; Lassen P; Gosewinkel U; Fritt-Rasmussen J; Gustavson K; Mosbech A
    Sci Total Environ; 2018 Jun; 626():1243-1258. PubMed ID: 29898532
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Natural attenuation of oil in marine environments: A review.
    Péquin B; Cai Q; Lee K; Greer CW
    Mar Pollut Bull; 2022 Mar; 176():113464. PubMed ID: 35231783
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Inter- and Intra-Annual Bacterioplankton Community Patterns in a Deepwater Sub-Arctic Region: Persistent High Background Abundance of Putative Oil Degraders.
    Angelova AG; Berx B; Bresnan E; Joye SB; Free A; Gutierrez T
    mBio; 2021 Mar; 12(2):. PubMed ID: 33727364
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Application of C-band sentinel-1A SAR data as proxies for detecting oil spills of Chennai, East Coast of India.
    Dasari K; Anjaneyulu L; Nadimikeri J
    Mar Pollut Bull; 2022 Jan; 174():113182. PubMed ID: 34844147
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Mapping terrestrial oil spill impact using machine learning random forest and Landsat 8 OLI imagery: a case site within the Niger Delta region of Nigeria.
    Ozigis MS; Kaduk JD; Jarvis CH
    Environ Sci Pollut Res Int; 2019 Feb; 26(4):3621-3635. PubMed ID: 30535661
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Seminal quality prediction using data mining methods.
    Sahoo AJ; Kumar Y
    Technol Health Care; 2014; 22(4):531-45. PubMed ID: 24898862
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Detection of oil pollution impacts on vegetation using multifrequency SAR, multispectral images with fuzzy forest and random forest methods.
    Ozigis MS; Kaduk JD; Jarvis CH; da Conceição Bispo P; Balzter H
    Environ Pollut; 2020 Jan; 256():113360. PubMed ID: 31672372
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Automatic Synthetic Aperture Radar based oil spill detection and performance estimation via a semi-automatic operational service benchmark.
    Singha S; Vespe M; Trieschmann O
    Mar Pollut Bull; 2013 Aug; 73(1):199-209. PubMed ID: 23790462
    [TBL] [Abstract][Full Text] [Related]  

  • 49. An insight into the current oil spills and on-site bioremediation approaches to contaminated sites in Nigeria.
    Mafiana MO; Bashiru MD; Erhunmwunsee F; Dirisu CG; Li SW
    Environ Sci Pollut Res Int; 2021 Jan; 28(4):4073-4094. PubMed ID: 33188631
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A critical review of marine snow in the context of oil spills and oil spill dispersant treatment with focus on the Deepwater Horizon oil spill.
    Brakstad OG; Lewis A; Beegle-Krause CJ
    Mar Pollut Bull; 2018 Oct; 135():346-356. PubMed ID: 30301046
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Detection of Oil Spill Using SAR Imagery Based on AlexNet Model.
    Wang X; Liu J; Zhang S; Deng Q; Wang Z; Li Y; Fan J
    Comput Intell Neurosci; 2021; 2021():4812979. PubMed ID: 34326866
    [TBL] [Abstract][Full Text] [Related]  

  • 52. An examination of onshore produced water spills in the state of California: incident frequency, spatial distribution, and shortcomings in available data.
    Rossi RJ; DiGiulio DC; Shonkoff SBC
    Environ Sci Pollut Res Int; 2023 Feb; 30(7):18631-18642. PubMed ID: 36215008
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Risk assessment of marine oil spills using dynamic Bayesian network analyses.
    Liu Z; Han Z; Chen Q; Shi X; Ma Q; Cai B; Liu Y
    Environ Pollut; 2023 Jan; 317():120716. PubMed ID: 36427830
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Biodegradation of marine oil spill residues using aboriginal bacterial consortium based on Penglai 19-3 oil spill accident, China.
    Wang C; Liu X; Guo J; Lv Y; Li Y
    Ecotoxicol Environ Saf; 2018 Sep; 159():20-27. PubMed ID: 29730405
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Ten years after the prestige oil spill: seabird trophic ecology as indicator of long-term effects on the coastal marine ecosystem.
    Moreno R; Jover L; Diez C; Sardà-Palomera F; Sanpera C
    PLoS One; 2013; 8(10):e77360. PubMed ID: 24130877
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Machine learning-aided causal inference for unraveling chemical dispersant and salinity effects on crude oil biodegradation.
    Cao Y; Kang Q; Zhang B; Zhu Z; Dong G; Cai Q; Lee K; Chen B
    Bioresour Technol; 2022 Feb; 345():126468. PubMed ID: 34864175
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Quantitative ecological risk assessment of oil spills: The case of the Fernando de Noronha Archipelago.
    Siqueira PG; Moura MDC; Duarte HO
    Mar Pollut Bull; 2023 Apr; 189():114791. PubMed ID: 36898270
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The effects of biostimulation and bioaugmentation on crude oil biodegradation in two adjacent terrestrial oil spills of different age, in a hyper-arid region.
    Banet G; Turaani AK; Farber R; Armoza-Zvuloni R; Rotem N; Stavi I; Cahan R
    J Environ Manage; 2021 May; 286():112248. PubMed ID: 33676134
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Probabilistic risk assessment of oil spill from offshore oil wells in Persian Gulf.
    Amir-Heidari P; Raie M
    Mar Pollut Bull; 2018 Nov; 136():291-299. PubMed ID: 30509810
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Minimizing risks from spilled oil to ecosystem services using influence diagrams: the Deepwater Horizon spill response.
    Carriger JF; Barron MG
    Environ Sci Technol; 2011 Sep; 45(18):7631-9. PubMed ID: 21875054
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.