BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

590 related articles for article (PubMed ID: 35740018)

  • 1. Focus on the Contribution of Oxidative Stress in Skin Aging.
    Papaccio F; D Arino A; Caputo S; Bellei B
    Antioxidants (Basel); 2022 Jun; 11(6):. PubMed ID: 35740018
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomarkers, oxidative stress and autophagy in skin aging.
    Gu Y; Han J; Jiang C; Zhang Y
    Ageing Res Rev; 2020 May; 59():101036. PubMed ID: 32105850
    [TBL] [Abstract][Full Text] [Related]  

  • 3.
    McCully KS
    Ann Clin Lab Sci; 2018 Sep; 48(5):677-687. PubMed ID: 30373877
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Skin aging and oxidative stress: Equol's anti-aging effects via biochemical and molecular mechanisms.
    Lephart ED
    Ageing Res Rev; 2016 Nov; 31():36-54. PubMed ID: 27521253
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Natural Antioxidants: Multiple Mechanisms to Protect Skin From Solar Radiation.
    Dunaway S; Odin R; Zhou L; Ji L; Zhang Y; Kadekaro AL
    Front Pharmacol; 2018; 9():392. PubMed ID: 29740318
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shedding a New Light on Skin Aging, Iron- and Redox-Homeostasis and Emerging Natural Antioxidants.
    Pourzand C; Albieri-Borges A; Raczek NN
    Antioxidants (Basel); 2022 Feb; 11(3):. PubMed ID: 35326121
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Caffeine Protects Skin from Oxidative Stress-Induced Senescence through the Activation of Autophagy.
    Li YF; Ouyang SH; Tu LF; Wang X; Yuan WL; Wang GE; Wu YP; Duan WJ; Yu HM; Fang ZZ; Kurihara H; Zhang Y; He RR
    Theranostics; 2018; 8(20):5713-5730. PubMed ID: 30555576
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular mechanisms of skin aging: state of the art.
    Makrantonaki E; Zouboulis CC
    Ann N Y Acad Sci; 2007 Nov; 1119():40-50. PubMed ID: 18056953
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protective Role of Melatonin and Its Metabolites in Skin Aging.
    Bocheva G; Slominski RM; Janjetovic Z; Kim TK; Böhm M; Steinbrink K; Reiter RJ; Kleszczyński K; Slominski AT
    Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35163162
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Skin aging from mechanisms to interventions: focusing on dermal aging.
    Shin SH; Lee YH; Rho NK; Park KY
    Front Physiol; 2023; 14():1195272. PubMed ID: 37234413
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidative stress and protein aggregation during biological aging.
    Squier TC
    Exp Gerontol; 2001 Sep; 36(9):1539-50. PubMed ID: 11525876
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mitochondrial function and redox control in the aging eye: role of MsrA and other repair systems in cataract and macular degenerations.
    Brennan LA; Kantorow M
    Exp Eye Res; 2009 Feb; 88(2):195-203. PubMed ID: 18588875
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Atmospheric skin aging-Contributors and inhibitors.
    McDaniel D; Farris P; Valacchi G
    J Cosmet Dermatol; 2018 Apr; 17(2):124-137. PubMed ID: 29575554
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Molecular Mechanism of Polyphenols with Anti-Aging Activity in Aged Human Dermal Fibroblasts.
    Lee JH; Park J; Shin DW
    Molecules; 2022 Jul; 27(14):. PubMed ID: 35889225
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Skin aging.
    Sjerobabski-Masnec I; Situm M
    Acta Clin Croat; 2010 Dec; 49(4):515-8. PubMed ID: 21830465
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targets Involved in Skin Aging and Photoaging and their Possible Inhibitors: A Mini-review.
    de Moura JP; de Moura Fernandes ÉP; Lustoza Rodrigues TCM; Messias Monteiro AF; de Sousa NF; Dos Santos AMF; Scotti MT; Scotti L
    Curr Drug Targets; 2023; 24(10):797-815. PubMed ID: 37469150
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fighting against Skin Aging: The Way from Bench to Bedside.
    Zhang S; Duan E
    Cell Transplant; 2018 May; 27(5):729-738. PubMed ID: 29692196
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Age-associated reduction of cell spreading induces mitochondrial DNA common deletion by oxidative stress in human skin dermal fibroblasts: implication for human skin connective tissue aging.
    Quan C; Cho MK; Perry D; Quan T
    J Biomed Sci; 2015 Jul; 22(1):62. PubMed ID: 26215577
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MicroRNA-15b regulates mitochondrial ROS production and the senescence-associated secretory phenotype through sirtuin 4/SIRT4.
    Lang A; Grether-Beck S; Singh M; Kuck F; Jakob S; Kefalas A; Altinoluk-Hambüchen S; Graffmann N; Schneider M; Lindecke A; Brenden H; Felsner I; Ezzahoini H; Marini A; Weinhold S; Vierkötter A; Tigges J; Schmidt S; Stühler K; Köhrer K; Uhrberg M; Haendeler J; Krutmann J; Piekorz RP
    Aging (Albany NY); 2016 Mar; 8(3):484-505. PubMed ID: 26959556
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Telomeres and Mitochondrial Metabolism: Implications for Cellular Senescence and Age-related Diseases.
    Gao X; Yu X; Zhang C; Wang Y; Sun Y; Sun H; Zhang H; Shi Y; He X
    Stem Cell Rev Rep; 2022 Oct; 18(7):2315-2327. PubMed ID: 35460064
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.