BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 35740948)

  • 1. Inhibiting NADPH Oxidases to Target Vascular and Other Pathologies: An Update on Recent Experimental and Clinical Studies.
    Sylvester AL; Zhang DX; Ran S; Zinkevich NS
    Biomolecules; 2022 Jun; 12(6):. PubMed ID: 35740948
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distinct roles of Nox1 and Nox4 in basal and angiotensin II-stimulated superoxide and hydrogen peroxide production.
    Dikalov SI; Dikalova AE; Bikineyeva AT; Schmidt HH; Harrison DG; Griendling KK
    Free Radic Biol Med; 2008 Nov; 45(9):1340-51. PubMed ID: 18760347
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ROS-induced ROS release orchestrated by Nox4, Nox2, and mitochondria in VEGF signaling and angiogenesis.
    Kim YM; Kim SJ; Tatsunami R; Yamamura H; Fukai T; Ushio-Fukai M
    Am J Physiol Cell Physiol; 2017 Jun; 312(6):C749-C764. PubMed ID: 28424170
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NADPH oxidases in vascular pathology.
    Konior A; Schramm A; Czesnikiewicz-Guzik M; Guzik TJ
    Antioxid Redox Signal; 2014 Jun; 20(17):2794-814. PubMed ID: 24180474
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NOX Inhibitors: From Bench to Naxibs to Bedside.
    Elbatreek MH; Mucke H; Schmidt HHHW
    Handb Exp Pharmacol; 2021; 264():145-168. PubMed ID: 32780287
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vascular Biology of Superoxide-Generating NADPH Oxidase 5-Implications in Hypertension and Cardiovascular Disease.
    Touyz RM; Anagnostopoulou A; Camargo LL; Rios FJ; Montezano AC
    Antioxid Redox Signal; 2019 Mar; 30(7):1027-1040. PubMed ID: 30334629
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reactive Oxygen Species Can Provide Atheroprotection via NOX4-Dependent Inhibition of Inflammation and Vascular Remodeling.
    Gray SP; Di Marco E; Kennedy K; Chew P; Okabe J; El-Osta A; Calkin AC; Biessen EA; Touyz RM; Cooper ME; Schmidt HH; Jandeleit-Dahm KA
    Arterioscler Thromb Vasc Biol; 2016 Feb; 36(2):295-307. PubMed ID: 26715682
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NADPH oxidases, reactive oxygen species, and hypertension: clinical implications and therapeutic possibilities.
    Paravicini TM; Touyz RM
    Diabetes Care; 2008 Feb; 31 Suppl 2():S170-80. PubMed ID: 18227481
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nicotinamide Adenine Dinucleotide Phosphate Oxidases in Glucose Homeostasis and Diabetes-Related Endothelial Cell Dysfunction.
    Brown OI; Bridge KI; Kearney MT
    Cells; 2021 Sep; 10(9):. PubMed ID: 34571964
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular mechanisms of hypertension: role of Nox family NADPH oxidases.
    Sedeek M; Hébert RL; Kennedy CR; Burns KD; Touyz RM
    Curr Opin Nephrol Hypertens; 2009 Mar; 18(2):122-7. PubMed ID: 19430333
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nox isoforms in vascular pathophysiology: insights from transgenic and knockout mouse models.
    Rivera J; Sobey CG; Walduck AK; Drummond GR
    Redox Rep; 2010; 15(2):50-63. PubMed ID: 20500986
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Nox family of NADPH oxidases: friend or foe of the vascular system?
    Takac I; Schröder K; Brandes RP
    Curr Hypertens Rep; 2012 Feb; 14(1):70-8. PubMed ID: 22071588
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nox2-induced production of mitochondrial superoxide in angiotensin II-mediated endothelial oxidative stress and hypertension.
    Dikalov SI; Nazarewicz RR; Bikineyeva A; Hilenski L; Lassègue B; Griendling KK; Harrison DG; Dikalova AE
    Antioxid Redox Signal; 2014 Jan; 20(2):281-94. PubMed ID: 24053613
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of histone deacetylase reduces transcription of NADPH oxidases and ROS production and ameliorates pulmonary arterial hypertension.
    Chen F; Li X; Aquadro E; Haigh S; Zhou J; Stepp DW; Weintraub NL; Barman SA; Fulton DJR
    Free Radic Biol Med; 2016 Oct; 99():167-178. PubMed ID: 27498117
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NOX2 and NOX4 mediate proliferative response in endothelial cells.
    Petry A; Djordjevic T; Weitnauer M; Kietzmann T; Hess J; Görlach A
    Antioxid Redox Signal; 2006; 8(9-10):1473-84. PubMed ID: 16987004
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NADPH oxidases: functions and pathologies in the vasculature.
    Lassègue B; Griendling KK
    Arterioscler Thromb Vasc Biol; 2010 Apr; 30(4):653-61. PubMed ID: 19910640
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bone morphogenic protein 4 produced in endothelial cells by oscillatory shear stress induces monocyte adhesion by stimulating reactive oxygen species production from a nox1-based NADPH oxidase.
    Sorescu GP; Song H; Tressel SL; Hwang J; Dikalov S; Smith DA; Boyd NL; Platt MO; Lassègue B; Griendling KK; Jo H
    Circ Res; 2004 Oct; 95(8):773-9. PubMed ID: 15388638
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Endothelial NADPH oxidases: which NOX to target in vascular disease?
    Drummond GR; Sobey CG
    Trends Endocrinol Metab; 2014 Sep; 25(9):452-63. PubMed ID: 25066192
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Point mutations in the proline-rich region of p22phox are dominant inhibitors of Nox1- and Nox2-dependent reactive oxygen generation.
    Kawahara T; Ritsick D; Cheng G; Lambeth JD
    J Biol Chem; 2005 Sep; 280(36):31859-69. PubMed ID: 15994299
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential contribution of Nox1, Nox2 and Nox4 to kidney vascular oxidative stress and endothelial dysfunction in obesity.
    Muñoz M; López-Oliva ME; Rodríguez C; Martínez MP; Sáenz-Medina J; Sánchez A; Climent B; Benedito S; García-Sacristán A; Rivera L; Hernández M; Prieto D
    Redox Biol; 2020 Jan; 28():101330. PubMed ID: 31563085
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.