BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 35741020)

  • 1. Systemic Ablation of
    Pulliam TL; Awad D; Han JJ; Murray MM; Ackroyd JJ; Goli P; Oakhill JS; Scott JW; Ittmann MM; Frigo DE
    Cells; 2022 Jun; 11(12):. PubMed ID: 35741020
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential requirement for Src family tyrosine kinases in the initiation, progression, and metastasis of prostate cancer.
    Gelman IH; Peresie J; Eng KH; Foster BA
    Mol Cancer Res; 2014 Oct; 12(10):1470-9. PubMed ID: 25053806
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A regulatory feedback loop between Ca2+/calmodulin-dependent protein kinase kinase 2 (CaMKK2) and the androgen receptor in prostate cancer progression.
    Karacosta LG; Foster BA; Azabdaftari G; Feliciano DM; Edelman AM
    J Biol Chem; 2012 Jul; 287(29):24832-43. PubMed ID: 22654108
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CAMKK2 Promotes Prostate Cancer Independently of AMPK via Increased Lipogenesis.
    Penfold L; Woods A; Muckett P; Nikitin AY; Kent TR; Zhang S; Graham R; Pollard A; Carling D
    Cancer Res; 2018 Dec; 78(24):6747-6761. PubMed ID: 30242113
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Raf kinase inhibitor protein (RKIP) deficiency decreases latency of tumorigenesis and increases metastasis in a murine genetic model of prostate cancer.
    Escara-Wilke J; Keller JM; Ignatoski KM; Dai J; Shelley G; Mizokami A; Zhang J; Yeung ML; Yeung KC; Keller ET
    Prostate; 2015 Feb; 75(3):292-302. PubMed ID: 25327941
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation and role of CAMKK2 in prostate cancer.
    Pulliam TL; Goli P; Awad D; Lin C; Wilkenfeld SR; Frigo DE
    Nat Rev Urol; 2022 Jun; 19(6):367-380. PubMed ID: 35474107
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Research Resource: Roles for Calcium/Calmodulin-Dependent Protein Kinase Kinase 2 (CaMKK2) in Systems Metabolism.
    Marcelo KL; Ribar T; Means CR; Tsimelzon A; Stevens RD; Ilkayeva O; Bain JR; Hilsenbeck SG; Newgard CB; Means AR; York B
    Mol Endocrinol; 2016 May; 30(5):557-72. PubMed ID: 27003444
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of CAMKK2 impairs autophagy and castration-resistant prostate cancer via suppression of AMPK-ULK1 signaling.
    Lin C; Blessing AM; Pulliam TL; Shi Y; Wilkenfeld SR; Han JJ; Murray MM; Pham AH; Duong K; Brun SN; Shaw RJ; Ittmann MM; Frigo DE
    Oncogene; 2021 Mar; 40(9):1690-1705. PubMed ID: 33531625
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Down-regulation of calcium/calmodulin-dependent protein kinase kinase 2 by androgen deprivation induces castration-resistant prostate cancer.
    Shima T; Mizokami A; Miyagi T; Kawai K; Izumi K; Kumaki M; Ofude M; Zhang J; Keller ET; Namiki M
    Prostate; 2012 Dec; 72(16):1789-801. PubMed ID: 22549914
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calcium/calmodulin-dependent protein kinase kinase 2 regulates hepatic fuel metabolism.
    Stork BA; Dean A; Ortiz AR; Saha P; Putluri N; Planas-Silva MD; Mahmud I; Rajapakshe K; Coarfa C; Knapp S; Lorenzi PL; Kemp BE; Turk BE; Scott JW; Means AR; York B
    Mol Metab; 2022 Aug; 62():101513. PubMed ID: 35562082
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Germline genetic variation modulates tumor progression and metastasis in a mouse model of neuroendocrine prostate carcinoma.
    Patel SJ; Molinolo AA; Gutkind S; Crawford NP
    PLoS One; 2013; 8(4):e61848. PubMed ID: 23620793
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deletion of p21/Cdkn1a confers protective effect against prostate tumorigenesis in transgenic adenocarcinoma of the mouse prostate model.
    Jain AK; Raina K; Agarwal R
    Cell Cycle; 2013 May; 12(10):1598-604. PubMed ID: 23624841
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic deletion of osteopontin in TRAMP mice skews prostate carcinogenesis from adenocarcinoma to aggressive human-like neuroendocrine cancers.
    Mauri G; Jachetti E; Comuzzi B; Dugo M; Arioli I; Miotti S; Sangaletti S; Di Carlo E; Tripodo C; Colombo MP
    Oncotarget; 2016 Jan; 7(4):3905-20. PubMed ID: 26700622
    [TBL] [Abstract][Full Text] [Related]  

  • 14. P21 and P27 promote tumorigenesis and progression via cell cycle acceleration in seminal vesicles of TRAMP mice.
    Li T; Wang F; Dang Y; Dong J; Zhang Y; Zhang C; Liu P; Gao Y; Wang X; Yang S; Lu S
    Int J Biol Sci; 2019; 15(10):2198-2210. PubMed ID: 31592235
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Caveolin-1 promotes tumor progression in an autochthonous mouse model of prostate cancer: genetic ablation of Cav-1 delays advanced prostate tumor development in tramp mice.
    Williams TM; Hassan GS; Li J; Cohen AW; Medina F; Frank PG; Pestell RG; Di Vizio D; Loda M; Lisanti MP
    J Biol Chem; 2005 Jul; 280(26):25134-45. PubMed ID: 15802273
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The insulin-like growth factor axis and prostate cancer: lessons from the transgenic adenocarcinoma of mouse prostate (TRAMP) model.
    Kaplan PJ; Mohan S; Cohen P; Foster BA; Greenberg NM
    Cancer Res; 1999 May; 59(9):2203-9. PubMed ID: 10232609
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deletion of CaMKK2 from the liver lowers blood glucose and improves whole-body glucose tolerance in the mouse.
    Anderson KA; Lin F; Ribar TJ; Stevens RD; Muehlbauer MJ; Newgard CB; Means AR
    Mol Endocrinol; 2012 Feb; 26(2):281-91. PubMed ID: 22240810
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GLUT12 promotes prostate cancer cell growth and is regulated by androgens and CaMKK2 signaling.
    White MA; Tsouko E; Lin C; Rajapakshe K; Spencer JM; Wilkenfeld SR; Vakili SS; Pulliam TL; Awad D; Nikolos F; Katreddy RR; Kaipparettu BA; Sreekumar A; Zhang X; Cheung E; Coarfa C; Frigo DE
    Endocr Relat Cancer; 2018 Apr; 25(4):453-469. PubMed ID: 29431615
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Targeted deletion of hepatic Igf1 in TRAMP mice leads to dramatic alterations in the circulating insulin-like growth factor axis but does not reduce tumor progression.
    Anzo M; Cobb LJ; Hwang DL; Mehta H; Said JW; Yakar S; LeRoith D; Cohen P
    Cancer Res; 2008 May; 68(9):3342-9. PubMed ID: 18451161
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dysfunctional transforming growth factor-beta receptor II accelerates prostate tumorigenesis in the TRAMP mouse model.
    Pu H; Collazo J; Jones E; Gayheart D; Sakamoto S; Vogt A; Mitchell B; Kyprianou N
    Cancer Res; 2009 Sep; 69(18):7366-74. PubMed ID: 19738062
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.