BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

348 related articles for article (PubMed ID: 35741060)

  • 1. Cardiac Remodeling in Cancer-Induced Cachexia: Functional, Structural, and Metabolic Contributors.
    Wiggs MP; Beaudry AG; Law ML
    Cells; 2022 Jun; 11(12):. PubMed ID: 35741060
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cardiac myocyte intrinsic contractility and calcium handling deficits underlie heart organ dysfunction in murine cancer cachexia.
    Law ML; Metzger JM
    Sci Rep; 2021 Dec; 11(1):23627. PubMed ID: 34880268
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Megestrol acetate improves cardiac function in a model of cancer cachexia-induced cardiomyopathy by autophagic modulation.
    Musolino V; Palus S; Tschirner A; Drescher C; Gliozzi M; Carresi C; Vitale C; Muscoli C; Doehner W; von Haehling S; Anker SD; Mollace V; Springer J
    J Cachexia Sarcopenia Muscle; 2016 Dec; 7(5):555-566. PubMed ID: 27239419
    [TBL] [Abstract][Full Text] [Related]  

  • 4. F-BOX proteins in cancer cachexia and muscle wasting: Emerging regulators and therapeutic opportunities.
    Sukari A; Muqbil I; Mohammad RM; Philip PA; Azmi AS
    Semin Cancer Biol; 2016 Feb; 36():95-104. PubMed ID: 26804424
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Excessive fatty acid oxidation induces muscle atrophy in cancer cachexia.
    Fukawa T; Yan-Jiang BC; Min-Wen JC; Jun-Hao ET; Huang D; Qian CN; Ong P; Li Z; Chen S; Mak SY; Lim WJ; Kanayama HO; Mohan RE; Wang RR; Lai JH; Chua C; Ong HS; Tan KK; Ho YS; Tan IB; Teh BT; Shyh-Chang N
    Nat Med; 2016 Jun; 22(6):666-71. PubMed ID: 27135739
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cancer cachexia: molecular mechanism and pharmacological management.
    Li Y; Jin H; Chen Y; Huang T; Mi Y; Zou Z
    Biochem J; 2021 May; 478(9):1663-1688. PubMed ID: 33970218
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence for cardiac atrophic remodeling in cancer-induced cachexia in mice.
    Tian M; Asp ML; Nishijima Y; Belury MA
    Int J Oncol; 2011 Nov; 39(5):1321-6. PubMed ID: 21822537
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nuclear magnetic resonance in conjunction with functional genomics suggests mitochondrial dysfunction in a murine model of cancer cachexia.
    Constantinou C; Fontes de Oliveira CC; Mintzopoulos D; Busquets S; He J; Kesarwani M; Mindrinos M; Rahme LG; Argilés JM; Tzika AA
    Int J Mol Med; 2011 Jan; 27(1):15-24. PubMed ID: 21069263
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic derangements of skeletal muscle from a murine model of glioma cachexia.
    Cui P; Shao W; Huang C; Wu CJ; Jiang B; Lin D
    Skelet Muscle; 2019 Jan; 9(1):3. PubMed ID: 30635036
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular Mechanisms of Cachexia: A Review.
    Neshan M; Tsilimigras DI; Han X; Zhu H; Pawlik TM
    Cells; 2024 Jan; 13(3):. PubMed ID: 38334644
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pectoralis major muscle atrophy is associated with mitochondrial energy wasting in cachectic patients with gastrointestinal cancer.
    Dolly A; Lecomte T; Tabchouri N; Caulet M; Michot N; Anon B; Chautard R; Desvignes Y; Ouaissi M; Fromont-Hankard G; Dumas JF; Servais S
    J Cachexia Sarcopenia Muscle; 2022 Jun; 13(3):1837-1849. PubMed ID: 35316572
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Muscle wasting in cancer and ageing: cachexia versus sarcopenia.
    Argilés JM; Busquets S; Felipe A; López-Soriano FJ
    Adv Gerontol; 2006; 18():39-54. PubMed ID: 16676797
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aerobic exercise training as therapy for cardiac and cancer cachexia.
    Alves CR; da Cunha TF; da Paixão NA; Brum PC
    Life Sci; 2015 Mar; 125():9-14. PubMed ID: 25500304
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advances in cancer cachexia: Intersection between affected organs, mediators, and pharmacological interventions.
    Siddiqui JA; Pothuraju R; Jain M; Batra SK; Nasser MW
    Biochim Biophys Acta Rev Cancer; 2020 Apr; 1873(2):188359. PubMed ID: 32222610
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitochondrial plasticity in cancer-related muscle wasting: potential approaches for its management.
    Vitorino R; Moreira-Gonçalves D; Ferreira R
    Curr Opin Clin Nutr Metab Care; 2015 May; 18(3):226-33. PubMed ID: 25783794
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TNF-α and cancer cachexia: Molecular insights and clinical implications.
    Patel HJ; Patel BM
    Life Sci; 2017 Feb; 170():56-63. PubMed ID: 27919820
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessing Metabolic Dysregulation in Muscle During Cachexia.
    Hsu MY; Porporato PE; Wyart E
    Methods Mol Biol; 2019; 1928():337-352. PubMed ID: 30725463
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The pathogenesis and treatment of cardiac atrophy in cancer cachexia.
    Murphy KT
    Am J Physiol Heart Circ Physiol; 2016 Feb; 310(4):H466-77. PubMed ID: 26718971
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exercise as an anti-inflammatory therapy for cancer cachexia: a focus on interleukin-6 regulation.
    Daou HN
    Am J Physiol Regul Integr Comp Physiol; 2020 Feb; 318(2):R296-R310. PubMed ID: 31823669
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cardiac Cachexia: Unaddressed Aspect in Cancer Patients.
    Saha S; Singh PK; Roy P; Kakar SS
    Cells; 2022 Mar; 11(6):. PubMed ID: 35326441
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.