These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 35741136)
21. Hybrid analysis for indicating patients with breast cancer using temperature time series. Silva LF; Santos AA; Bravo RS; Silva AC; Muchaluat-Saade DC; Conci A Comput Methods Programs Biomed; 2016 Jul; 130():142-53. PubMed ID: 27208529 [TBL] [Abstract][Full Text] [Related]
22. Determining the Need for Computed Tomography Scan Following Blunt Chest Trauma through Machine Learning Approaches. Shahverdi Kondori M; Malek H Arch Acad Emerg Med; 2021; 9(1):e15. PubMed ID: 33681820 [TBL] [Abstract][Full Text] [Related]
23. CureMate: A clinical decision support system for breast cancer treatment. Gómez Del Moral Herranz RM; López Rodríguez MJ; Seiffert AP; Soto Pérez-Olivares J; Chiva De Agustín M; Sánchez-González P Int J Med Inform; 2024 Dec; 192():105647. PubMed ID: 39393123 [TBL] [Abstract][Full Text] [Related]
24. Pima Indians diabetes mellitus classification based on machine learning (ML) algorithms. Chang V; Bailey J; Xu QA; Sun Z Neural Comput Appl; 2022 Mar; ():1-17. PubMed ID: 35345556 [TBL] [Abstract][Full Text] [Related]
25. Mammography Image-Based Diagnosis of Breast Cancer Using Machine Learning: A Pilot Study. Alshammari MM; Almuhanna A; Alhiyafi J Sensors (Basel); 2021 Dec; 22(1):. PubMed ID: 35009746 [TBL] [Abstract][Full Text] [Related]
27. Performance Analysis of Conventional Machine Learning Algorithms for Identification of Chronic Kidney Disease in Type 1 Diabetes Mellitus Patients. Chowdhury NH; Reaz MBI; Haque F; Ahmad S; Ali SHM; A Bakar AA; Bhuiyan MAS Diagnostics (Basel); 2021 Dec; 11(12):. PubMed ID: 34943504 [TBL] [Abstract][Full Text] [Related]
28. Machine learning for evolutive lymphoma and residual masses recognition in whole body diffusion weighted magnetic resonance images. Ferjaoui R; Cherni MA; Boujnah S; Kraiem NEH; Kraiem T Comput Methods Programs Biomed; 2021 Sep; 209():106320. PubMed ID: 34390938 [TBL] [Abstract][Full Text] [Related]
29. Development and Internal Validation of Supervised Machine Learning Algorithms for Predicting the Risk of Surgical Site Infection Following Minimally Invasive Transforaminal Lumbar Interbody Fusion. Wang H; Fan T; Yang B; Lin Q; Li W; Yang M Front Med (Lausanne); 2021; 8():771608. PubMed ID: 34988091 [No Abstract] [Full Text] [Related]
30. Comparison of machine learning algorithms for the prediction of five-year survival in oral squamous cell carcinoma. Alkhadar H; Macluskey M; White S; Ellis I; Gardner A J Oral Pathol Med; 2021 Apr; 50(4):378-384. PubMed ID: 33220109 [TBL] [Abstract][Full Text] [Related]
31. Machine Learning Detects Pattern of Differences in Functional Magnetic Resonance Imaging (fMRI) Data between Chronic Fatigue Syndrome (CFS) and Gulf War Illness (GWI). Provenzano D; Washington SD; Rao YJ; Loew M; Baraniuk J Brain Sci; 2020 Jul; 10(7):. PubMed ID: 32708912 [TBL] [Abstract][Full Text] [Related]
32. Prediction of human breast and colon cancers from imbalanced data using nearest neighbor and support vector machines. Majid A; Ali S; Iqbal M; Kausar N Comput Methods Programs Biomed; 2014 Mar; 113(3):792-808. PubMed ID: 24472367 [TBL] [Abstract][Full Text] [Related]
33. Multi-objective evolutionary algorithms for fuzzy classification in survival prediction. Jiménez F; Sánchez G; Juárez JM Artif Intell Med; 2014 Mar; 60(3):197-219. PubMed ID: 24525210 [TBL] [Abstract][Full Text] [Related]
34. Classification of Benign and Malignant Breast Masses on Mammograms for Large Datasets using Core Vector Machines. Jebamony J; Jacob D Curr Med Imaging; 2020; 16(6):703-710. PubMed ID: 32723242 [TBL] [Abstract][Full Text] [Related]
35. Machine Learning Based Identification of Microseismic Signals Using Characteristic Parameters. Peng K; Tang Z; Dong L; Sun D Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770274 [TBL] [Abstract][Full Text] [Related]
36. Reliable Prediction Models Based on Enriched Data for Identifying the Mode of Childbirth by Using Machine Learning Methods: Development Study. Ullah Z; Saleem F; Jamjoom M; Fakieh B J Med Internet Res; 2021 Jun; 23(6):e28856. PubMed ID: 34085938 [TBL] [Abstract][Full Text] [Related]
37. Best harmony, unified RPCL and automated model selection for unsupervised and supervised learning on Gaussian mixtures, three-layer nets and ME-RBF-SVM models. Xu L Int J Neural Syst; 2001 Feb; 11(1):43-69. PubMed ID: 11310554 [TBL] [Abstract][Full Text] [Related]