These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 35741382)

  • 1. Salicylic Acid in Plant Symbioses: Beyond Plant Pathogen Interactions.
    Benjamin G; Pandharikar G; Frendo P
    Biology (Basel); 2022 Jun; 11(6):. PubMed ID: 35741382
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Impacts of Domestication and Agricultural Practices on Legume Nutrient Acquisition Through Symbiosis With Rhizobia and Arbuscular Mycorrhizal Fungi.
    Liu A; Ku YS; Contador CA; Lam HM
    Front Genet; 2020; 11():583954. PubMed ID: 33193716
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A roadmap of plant membrane transporters in arbuscular mycorrhizal and legume-rhizobium symbioses.
    Banasiak J; Jamruszka T; Murray JD; Jasiński M
    Plant Physiol; 2021 Dec; 187(4):2071-2091. PubMed ID: 34618047
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phospholipase Ds in plants: Their role in pathogenic and symbiotic interactions.
    Pacheco R; Quinto C
    Plant Physiol Biochem; 2022 Jan; 173():76-86. PubMed ID: 35101797
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tripartite Interactions Between Endophytic Fungi, Arbuscular Mycorrhizal Fungi, and Leymus chinensis.
    Liu H; Wu M; Liu J; Qu Y; Gao Y; Ren A
    Microb Ecol; 2020 Jan; 79(1):98-109. PubMed ID: 31177395
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spontaneous symbiotic reprogramming of plant roots triggered by receptor-like kinases.
    Ried MK; Antolín-Llovera M; Parniske M
    Elife; 2014 Nov; 3():. PubMed ID: 25422918
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deciphering the Chitin Code in Plant Symbiosis, Defense, and Microbial Networks.
    Khokhani D; Carrera Carriel C; Vayla S; Irving TB; Stonoha-Arther C; Keller NP; Ané JM
    Annu Rev Microbiol; 2021 Oct; 75():583-607. PubMed ID: 34623896
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mycorrhiza-induced resistance and priming of plant defenses.
    Jung SC; Martinez-Medina A; Lopez-Raez JA; Pozo MJ
    J Chem Ecol; 2012 Jun; 38(6):651-64. PubMed ID: 22623151
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Plant-microbe symbioses as an evolutionary continuum].
    Provorov NA
    Zh Obshch Biol; 2009; 70(1):10-34. PubMed ID: 19326852
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Evolution of nitrogen-fixing symbioses based on the migration of bacteria from mycorrhizal fungi and soil into the plant tissues].
    Provorov NA; Shtark OY; Dolgikh EA
    Zh Obshch Biol; 2016; 77(5):329-45. PubMed ID: 30024143
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Defense related phytohormones regulation in arbuscular mycorrhizal symbioses depends on the partner genotypes.
    Fernández I; Merlos M; López-Ráez JA; Martínez-Medina A; Ferrol N; Azcón C; Bonfante P; Flors V; Pozo MJ
    J Chem Ecol; 2014 Jul; 40(7):791-803. PubMed ID: 24997625
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A rulebook for peptide control of legume-microbe endosymbioses.
    Roy S; Müller LM
    Trends Plant Sci; 2022 Sep; 27(9):870-889. PubMed ID: 35246381
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unraveling Arbuscular Mycorrhiza-Induced Changes in Plant Primary and Secondary Metabolome.
    Kaur S; Suseela V
    Metabolites; 2020 Aug; 10(8):. PubMed ID: 32824704
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tripartite legume-rhizobia-mycorrhizae relationship is influenced by light and soil nitrogen in Neotropical canopy gaps.
    Ficano N; Porder S; McCulloch LA
    Ecology; 2021 Nov; 102(11):e03489. PubMed ID: 34292601
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The
    García-Soto I; Boussageon R; Cruz-Farfán YM; Castro-Chilpa JD; Hernández-Cerezo LX; Bustos-Zagal V; Leija-Salas A; Hernández G; Torres M; Formey D; Courty PE; Wipf D; Serrano M; Tromas A
    Front Plant Sci; 2021; 12():696450. PubMed ID: 34868100
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diversity and regulation of symbiotic nitrogen fixation in plants.
    Xu P; Wang E
    Curr Biol; 2023 Jun; 33(11):R543-R559. PubMed ID: 37279688
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arbuscular Mycorrhizal Symbiosis: Plant Friend or Foe in the Fight Against Viruses?
    Miozzi L; Vaira AM; Catoni M; Fiorilli V; Accotto GP; Lanfranco L
    Front Microbiol; 2019; 10():1238. PubMed ID: 31231333
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Complex Interplay between Arbuscular Mycorrhizal Fungi and Strigolactone: Mechanisms, Sinergies, Applications and Future Directions.
    Boyno G; Rezaee Danesh Y; Demir S; Teniz N; Mulet JM; Porcel R
    Int J Mol Sci; 2023 Nov; 24(23):. PubMed ID: 38069097
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The costs and benefits of symbiotic interactions: variable effects of rhizobia and arbuscular mycorrhizae on Vigna radiata accessions.
    Chien CC; Tien SY; Yang SY; Lee CR
    BMC Plant Biol; 2024 Aug; 24(1):780. PubMed ID: 39148012
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of Arbuscular Mycorrhizal Fungi in Regulating Growth, Enhancing Productivity, and Potentially Influencing Ecosystems under Abiotic and Biotic Stresses.
    Wahab A; Muhammad M; Munir A; Abdi G; Zaman W; Ayaz A; Khizar C; Reddy SPP
    Plants (Basel); 2023 Aug; 12(17):. PubMed ID: 37687353
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.