BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 35741436)

  • 1. Not Too Warm, Not Too Cold: Thermal Treatments to Slightly Warmer or Colder Conditions from Mother's Origin Can Enhance Performance of Montane Butterfly Larvae.
    Zografou K; Adamidis GC; Sewall BJ; Grill A
    Biology (Basel); 2022 Jun; 11(6):. PubMed ID: 35741436
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Facing the Heat: Thermoregulation and Behaviour of Lowland Species of a Cold-Dwelling Butterfly Genus, Erebia.
    Kleckova I; Klecka J
    PLoS One; 2016; 11(3):e0150393. PubMed ID: 27008409
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reverse altitudinal cline in cold hardiness among Erebia butterflies.
    Vrba P; Konvicka M; Nedved O
    Cryo Letters; 2012; 33(4):251-8. PubMed ID: 22987236
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low winter precipitation, but not warm autumns and springs, threatens mountain butterflies in middle-high mountains.
    Konvicka M; Kuras T; Liparova J; Slezak V; Horázná D; Klečka J; Kleckova I
    PeerJ; 2021; 9():e12021. PubMed ID: 34532158
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Body size, not species identity, drives body heating in alpine Erebia butterflies.
    Kleckova I; Okrouhlík J; Svozil T; Matos-Maraví P; Klecka J
    J Therm Biol; 2023 Apr; 113():103502. PubMed ID: 37055121
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermoregulation and microhabitat use in mountain butterflies of the genus Erebia: importance of fine-scale habitat heterogeneity.
    Kleckova I; Konvicka M; Klecka J
    J Therm Biol; 2014 Apr; 41():50-8. PubMed ID: 24679972
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of recent and past climatic shifts on the genetic structure of the high mountain yellow-spotted ringlet butterfly Erebia manto (Lepidoptera, Satyrinae): a conservation problem.
    Schmitt T; Habel JC; Rödder D; Louy D
    Glob Chang Biol; 2014 Jul; 20(7):2045-61. PubMed ID: 24753365
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolution and plasticity of thermal performance: an analysis of variation in thermal tolerance and fitness in 22 Drosophila species.
    MacLean HJ; Sørensen JG; Kristensen TN; Loeschcke V; Beedholm K; Kellermann V; Overgaard J
    Philos Trans R Soc Lond B Biol Sci; 2019 Aug; 374(1778):20180548. PubMed ID: 31203763
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Morphological and behavioural differences facilitate tropical butterfly persistence in variable environments.
    Wenda C; Xing S; Nakamura A; Bonebrake TC
    J Anim Ecol; 2021 Dec; 90(12):2888-2900. PubMed ID: 34529271
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Specialized or opportunistic-how does the high mountain endemic butterfly Erebia nivalis survive in its extreme habitats?
    Ehl S; Dalstein V; Tull F; Gros P; Schmitt T
    Insect Sci; 2018 Feb; 25(1):161-171. PubMed ID: 27628710
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potential for thermal tolerance to mediate climate change effects on three members of a cool temperate lizard genus, Niveoscincus.
    Caldwell AJ; While GM; Beeton NJ; Wapstra E
    J Therm Biol; 2015 Aug; 52():14-23. PubMed ID: 26267494
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thyroid hormone levels and temperature during development alter thermal tolerance and energetics of
    Ruthsatz K; Dausmann KH; Peck MA; Drees C; Sabatino NM; Becker LI; Reese J; Hartmann L; Glos J
    Conserv Physiol; 2018; 6(1):coy059. PubMed ID: 30464840
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal variability increases the impact of autumnal warming and drives metabolic depression in an overwintering butterfly.
    Williams CM; Marshall KE; MacMillan HA; Dzurisin JD; Hellmann JJ; Sinclair BJ
    PLoS One; 2012; 7(3):e34470. PubMed ID: 22479634
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Elevational clines in the temperature dependence of insect performance and implications for ecological responses to climate change.
    Buckley LB; Nufio CR
    Conserv Physiol; 2014; 2(1):cou035. PubMed ID: 27293656
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phenological synchrony between a butterfly and its host plants: Experimental test of effects of spring temperature.
    Posledovich D; Toftegaard T; Wiklund C; Ehrlén J; Gotthard K
    J Anim Ecol; 2018 Jan; 87(1):150-161. PubMed ID: 29048758
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Local adaptation in thermal tolerance for a tropical butterfly across ecotone and rainforest habitats.
    Dongmo MAK; Hanna R; Smith TB; Fiaboe KKM; Fomena A; Bonebrake TC
    Biol Open; 2021 Apr; 10(4):. PubMed ID: 34416009
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Too hot to die? The effects of vegetation shading on past, present, and future activity budgets of two diurnal skinks from arid Australia.
    Grimm-Seyfarth A; Mihoub JB; Henle K
    Ecol Evol; 2017 Sep; 7(17):6803-6813. PubMed ID: 28904761
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The response of two butterfly species to climatic variation at the edge of their range and the implications for poleward range shifts.
    Hellmann JJ; Pelini SL; Prior KM; Dzurisin JD
    Oecologia; 2008 Oct; 157(4):583-92. PubMed ID: 18648857
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Staying in place and moving in space: Contrasting larval thermal sensitivity explains distributional changes of sympatric sea urchin species to habitat warming.
    Byrne M; Gall ML; Campbell H; Lamare MD; Holmes SP
    Glob Chang Biol; 2022 May; 28(9):3040-3053. PubMed ID: 35108424
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cold rearing improves cold-flight performance in Drosophila via changes in wing morphology.
    Frazier MR; Harrison JF; Kirkton SD; Roberts SP
    J Exp Biol; 2008 Jul; 211(Pt 13):2116-22. PubMed ID: 18552301
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.