These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 35741486)

  • 1. Study on Hydrate Production Behaviors by Depressurization Combined with Brine Injection in the Excess-Water Hydrate Reservoir.
    Zeng H; Zhang Y; Zhang L; Chen Z; Li X
    Entropy (Basel); 2022 May; 24(6):. PubMed ID: 35741486
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical Evaluation of Gas Hydrate Production Performance of the Depressurization and Backfilling with an In Situ Supplemental Heat Method.
    Xu T; Zhang Z; Li S; Li X; Lu C
    ACS Omega; 2021 May; 6(18):12274-12286. PubMed ID: 34056380
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical Investigation into the Development Performance of Gas Hydrate by Depressurization Based on Heat Transfer and Entropy Generation Analyses.
    Li B; Wei WN; Wan QC; Peng K; Chen LL
    Entropy (Basel); 2020 Oct; 22(11):. PubMed ID: 33286980
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical Investigation into the Gas Production from Hydrate Deposit under Various Thermal Stimulation Modes in a Multi-Well System in Qilian Mountain.
    Li B; Ye Y; Zhang T; Wan Q
    Entropy (Basel); 2021 Jun; 23(7):. PubMed ID: 34201808
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Class-III Hydrate Reservoir Depressurization Production Enhancement by Volume Fracturing and Cyclic N
    Xia Z; Wang X; Ren W
    ACS Omega; 2023 Dec; 8(50):47678-47689. PubMed ID: 38144109
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel apparatus for modeling the geological responses of reservoir and fluid-solid production behaviors during hydrate production.
    Liu Z; Zhao Y; Gong G; Hu W; Zhang Z; Ning F
    Rev Sci Instrum; 2022 Dec; 93(12):125109. PubMed ID: 36586933
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The second offshore production of methane hydrate in the Nankai Trough and gas production behavior from a heterogeneous methane hydrate reservoir.
    Yamamoto K; Wang XX; Tamaki M; Suzuki K
    RSC Adv; 2019 Aug; 9(45):25987-26013. PubMed ID: 35531029
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gas-Liquid-Solid Migration Characteristics of Gas Hydrate Sediments in Depressurization Combined with Thermal Stimulation Dissociation.
    Cheng C; Wang F; Zhang J; Qi T; Xu P; Zheng J; Zhao J; Zhang H; Xiao B; Li L; Yang P; Lv S
    ACS Omega; 2019 Oct; 4(17):17547-17555. PubMed ID: 31656928
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CO
    Hassanpouryouzband A; Yang J; Tohidi B; Chuvilin E; Istomin V; Bukhanov B; Cheremisin A
    Environ Sci Technol; 2018 Apr; 52(7):4324-4330. PubMed ID: 29513532
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of Different Factors on Methane Hydrate Formation Using a Visual Wellbore Simulator.
    Wang J; Tie Y; Liu Z; Zhang L; Jiang H; Guo P
    ACS Omega; 2022 Jul; 7(27):23147-23155. PubMed ID: 35847269
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interfacial Heat and Mass Transfer Effects on Secondary Hydrate Formation under Different Dissociation Conditions.
    Kou X; Zhang H; Li XS; Chen ZY; Wang Y
    Langmuir; 2024 Feb; ():. PubMed ID: 38330279
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental study on the effect of PVP, NaCl and EG on the methane hydrates formation and dissociation kinetics.
    Shen K; Zhao J; Zhou J; Wang Z; Wang Y
    Sci Rep; 2024 Jul; 14(1):16579. PubMed ID: 39019982
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Natural Gas Evolution in a Gas Hydrate Melt: Effect of Thermodynamic Hydrate Inhibitors.
    Sujith KS; Ramachandran CN
    J Phys Chem B; 2017 Jan; 121(1):153-163. PubMed ID: 27935719
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cyclic Formation Stability of 1,1,1,2-Tetrafluoroethane Hydrate in Different SDS Solution Systems and Dissociation Characteristics Using Thermal Stimulation Combined with Depressurization.
    Cheng C; Wang F; Zhang J; Qi T; Jin T; Zhao J; Zheng J; Li L; Li L; Yang P; Lv S
    ACS Omega; 2019 Jul; 4(7):11397-11407. PubMed ID: 31460244
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrate Growth on Methane Gas Bubbles in the Presence of Salt.
    Yu LCY; Charlton TB; Aman ZM; Wu DT; Koh CA
    Langmuir; 2020 Jan; 36(1):84-95. PubMed ID: 31820993
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic and Thermodynamic Influence of NaCl on Methane Hydrate in an Oil-Dominated System.
    Almashwali AA; Idress M; Lal B; Salem A; Jin QC
    ACS Omega; 2023 Nov; 8(47):44796-44803. PubMed ID: 38046291
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study on acoustic properties of hydrate-bearing sediments with reconstructed CO
    Zhu YJ; Huang X; Li H; Zhu YJ; Wang XH; Sun YF; Xiao P; Sun CY; Chen GJ
    Ultrason Sonochem; 2023 Nov; 100():106641. PubMed ID: 37832253
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental Investigation on the Imbibition Capacity and Its Influencing Factors in Hydrate Sediments.
    Yang L; Zhang C; Lu H; Zheng Y; Liu Y
    ACS Omega; 2020 Jun; 5(24):14564-14574. PubMed ID: 32596594
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of dry water on methane separation and recovery from coal mine gas based on hydrate.
    Zhang Q; Li C; Wu Q; Zhang B
    RSC Adv; 2018 Jul; 8(48):27171-27180. PubMed ID: 35540000
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activities and distribution of methanogenic and methane-oxidizing microbes in marine sediments from the Cascadia Margin.
    Yoshioka H; Maruyama A; Nakamura T; Higashi Y; Fuse H; Sakata S; Bartlett DH
    Geobiology; 2010 Jun; 8(3):223-33. PubMed ID: 20059557
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.