These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 35741527)

  • 1. A Time Two-Mesh Compact Difference Method for the One-Dimensional Nonlinear Schrödinger Equation.
    He S; Liu Y; Li H
    Entropy (Basel); 2022 Jun; 24(6):. PubMed ID: 35741527
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Maximum norm error estimates of fourth-order compact difference scheme for the nonlinear Schrödinger equation involving a quintic term.
    Hu H; Hu H
    J Inequal Appl; 2018; 2018(1):180. PubMed ID: 30137908
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A split-step finite element method for the space-fractional Schrödinger equation in two dimensions.
    Zhu X; Wan H; Zhang Y
    Sci Rep; 2024 Oct; 14(1):24257. PubMed ID: 39415026
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time-reversible and norm-conserving high-order integrators for the nonlinear time-dependent Schrödinger equation: Application to local control theory.
    Roulet J; Vaníček J
    J Chem Phys; 2021 Apr; 154(15):154106. PubMed ID: 33887925
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A high-resolution fuzzy transform combined compact scheme for 2D nonlinear elliptic partial differential equations.
    Jha N; Perfilieva I; Kritika
    MethodsX; 2023; 10():102206. PubMed ID: 37206645
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fast and Robust Sixth Order Multigrid Computation for 3D Convection Diffusion Equation.
    Wang Y; Zhang J
    J Comput Appl Math; 2010 Oct; 234(12):3496-3506. PubMed ID: 21151737
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A numerical study of adaptive space and time discretisations for Gross-Pitaevskii equations.
    Thalhammer M; Abhau J
    J Comput Phys; 2012 Aug; 231(20):6665-6681. PubMed ID: 25550676
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-accuracy positivity-preserving numerical method for Keller-Segel model.
    Zhang L; Ge Y; Yang X
    Math Biosci Eng; 2023 Mar; 20(5):8601-8631. PubMed ID: 37161214
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Parallel solver for the time-dependent linear and nonlinear Schrödinger equation.
    Schneider BI; Collins LA; Hu SX
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Mar; 73(3 Pt 2):036708. PubMed ID: 16605699
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Positivity-preserving high-order compact difference method for the Keller-Segel chemotaxis model.
    Zhang L; Ge Y; Wang Z
    Math Biosci Eng; 2022 May; 19(7):6764-6794. PubMed ID: 35730282
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulation of two-phase liquid-vapor flows using a high-order compact finite-difference lattice Boltzmann method.
    Hejranfar K; Ezzatneshan E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Nov; 92(5):053305. PubMed ID: 26651814
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Method of approximations for the convection-dominated anomalous diffusion equation in a rectangular plate using high-resolution compact discretization.
    Jha N; Verma S
    MethodsX; 2022; 9():101853. PubMed ID: 36164430
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the convergence of a high-accuracy compact conservative scheme for the modified regularized long-wave equation.
    Pan X; Zhang L
    Springerplus; 2016; 5():474. PubMed ID: 27217989
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Finite element methods for the biomechanics of soft hydrated tissues: nonlinear analysis and adaptive control of meshes.
    Spilker RL; de Almeida ES; Donzelli PS
    Crit Rev Biomed Eng; 1992; 20(3-4):279-313. PubMed ID: 1478094
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiscale steady discrete unified gas kinetic scheme with macroscopic coarse mesh acceleration using preconditioned Krylov subspace method for multigroup neutron Boltzmann transport equation.
    Zhou X; Guo Z
    Phys Rev E; 2023 Apr; 107(4-2):045304. PubMed ID: 37198859
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical solutions of the time-dependent Schrödinger equation in two dimensions.
    van Dijk W; Vanderwoerd T; Prins SJ
    Phys Rev E; 2017 Feb; 95(2-1):023310. PubMed ID: 28298000
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transparent boundary condition for simulating rogue wave solutions in the nonlinear Schrödinger equation.
    Zheng C; Tang S
    Phys Rev E; 2022 Nov; 106(5-2):055302. PubMed ID: 36559444
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical modeling considerations for an applied nonlinear Schrödinger equation.
    Pitts TA; Laine MR; Schwarz J; Rambo PK; Hautzenroeder BM; Karelitz DB
    Appl Opt; 2015 Feb; 54(6):1426-35. PubMed ID: 25968209
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An implicit split-operator algorithm for the nonlinear time-dependent Schrödinger equation.
    Roulet J; Vaníček J
    J Chem Phys; 2021 Nov; 155(20):204109. PubMed ID: 34852494
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High Order Compact Multigrid Solver for Implicit Solvation Models.
    Castañeda Medina A; Schmid R
    J Chem Theory Comput; 2019 Feb; 15(2):1293-1301. PubMed ID: 30649873
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.