These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 35741564)

  • 1. A Testable Theory for the Emergence of the Classical World.
    Kauffman S; Patra S
    Entropy (Basel); 2022 Jun; 24(6):. PubMed ID: 35741564
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantum Gravity If Non-Locality Is Fundamental.
    Kauffman SA
    Entropy (Basel); 2022 Apr; 24(4):. PubMed ID: 35455217
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantum Theory of the Classical: Einselection, Envariance, Quantum Darwinism and Extantons.
    Zurek WH
    Entropy (Basel); 2022 Oct; 24(11):. PubMed ID: 36359613
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantum decoherence, Zeno process, and time symmetry breaking.
    Petrosky T; Barsegov V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Apr; 65(4 Pt 2A):046102. PubMed ID: 12005921
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A general framework for the Quantum Zeno and anti-Zeno effects.
    Chaudhry AZ
    Sci Rep; 2016 Jul; 6():29497. PubMed ID: 27405268
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantum theory of the classical: quantum jumps, Born's Rule and objective classical reality via quantum Darwinism.
    Zurek WH
    Philos Trans A Math Phys Eng Sci; 2018 Jul; 376(2123):. PubMed ID: 29807905
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Does Decoherence Select the Pointer Basis of a Quantum Meter?
    Kofman AG; Kurizki G
    Entropy (Basel); 2022 Jan; 24(1):. PubMed ID: 35052132
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Emergence of the pointer basis through the dynamics of correlations.
    Cornelio MF; Farías OJ; Fanchini FF; Frerot I; Aguilar GH; Hor-Meyll MO; de Oliveira MC; Walborn SP; Caldeira AO; Ribeiro PH
    Phys Rev Lett; 2012 Nov; 109(19):190402. PubMed ID: 23215364
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The quantum Zeno and anti-Zeno effects with non-selective projective measurements.
    Majeed M; Chaudhry AZ
    Sci Rep; 2018 Oct; 8(1):14887. PubMed ID: 30291274
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Planning Implications Related to Sterilization-Sensitive Science Investigations Associated with Mars Sample Return (MSR).
    Velbel MA; Cockell CS; Glavin DP; Marty B; Regberg AB; Smith AL; Tosca NJ; Wadhwa M; Kminek G; Meyer MA; Beaty DW; Carrier BL; Haltigin T; Hays LE; Agee CB; Busemann H; Cavalazzi B; Debaille V; Grady MM; Hauber E; Hutzler A; McCubbin FM; Pratt LM; Smith CL; Summons RE; Swindle TD; Tait KT; Udry A; Usui T; Westall F; Zorzano MP
    Astrobiology; 2022 Jun; 22(S1):S112-S164. PubMed ID: 34904892
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The quantum Zeno and anti-Zeno effects with driving fields in the weak and strong coupling regimes.
    Majeed M; Chaudhry AZ
    Sci Rep; 2021 Jan; 11(1):1836. PubMed ID: 33469109
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Emergence of Objectivity for Quantum Many-Body Systems.
    Ollivier H
    Entropy (Basel); 2022 Feb; 24(2):. PubMed ID: 35205571
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mean-field dynamics with stochastic decoherence (MF-SD): a new algorithm for nonadiabatic mixed quantum/classical molecular-dynamics simulations with nuclear-induced decoherence.
    Bedard-Hearn MJ; Larsen RE; Schwartz BJ
    J Chem Phys; 2005 Dec; 123(23):234106. PubMed ID: 16392913
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heisenberg-limited sensitivity with decoherence-enhanced measurements.
    Braun D; Martin J
    Nat Commun; 2011; 2():223. PubMed ID: 21364562
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Zeno effect for quantum computation and control.
    Paz-Silva GA; Rezakhani AT; Dominy JM; Lidar DA
    Phys Rev Lett; 2012 Feb; 108(8):080501. PubMed ID: 22463507
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tuning quantum measurements to control chaos.
    Eastman JK; Hope JJ; Carvalho AR
    Sci Rep; 2017 Mar; 7():44684. PubMed ID: 28317933
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analyzing the Quantum Zeno and anti-Zeno effects using optimal projective measurements.
    Aftab MJ; Chaudhry AZ
    Sci Rep; 2017 Sep; 7(1):11766. PubMed ID: 28924194
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Decoherence, entanglement decay, and equilibration produced by chaotic environments.
    Lemos GB; Toscano F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 2):016220. PubMed ID: 21867286
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantifying Decoherence via Increases in Classicality.
    Fu S; Luo S
    Entropy (Basel); 2021 Nov; 23(12):. PubMed ID: 34945900
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controllable entanglement preparations between atoms in spatially-separated cavities via quantum Zeno dynamics.
    Li WA; Wei LF
    Opt Express; 2012 Jun; 20(12):13440-50. PubMed ID: 22714371
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.