These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 35741697)
1. Diagnosis and Prediction of Endometrial Carcinoma Using Machine Learning and Artificial Neural Networks Based on Public Databases. Zhao D; Zhang Z; Wang Z; Du Z; Wu M; Zhang T; Zhou J; Zhao W; Meng Y Genes (Basel); 2022 May; 13(6):. PubMed ID: 35741697 [TBL] [Abstract][Full Text] [Related]
2. Construction of a microenvironment immune gene model for predicting the prognosis of endometrial cancer. Wang Y; Zhang J; Zhou Y; Li Z; Lv D; Liu Q BMC Cancer; 2021 Nov; 21(1):1203. PubMed ID: 34763648 [TBL] [Abstract][Full Text] [Related]
3. Identification of crucial genes related to heart failure based on GEO database. Chen Y; Xue J; Yan X; Fang DG; Li F; Tian X; Yan P; Feng Z BMC Cardiovasc Disord; 2023 Jul; 23(1):376. PubMed ID: 37507655 [TBL] [Abstract][Full Text] [Related]
4. Immune-related gene Nong B; Su T; Jin M; Huang J; Huang A; Fang D; Wei J Transl Cancer Res; 2021 Jun; 10(6):2962-2976. PubMed ID: 35116604 [TBL] [Abstract][Full Text] [Related]
5. Identification of core genes in the progression of endometrial cancer and cancer cell-derived exosomes by an integrative analysis. Shi S; Tan Q; Feng F; Huang H; Liang J; Cao D; Wang Z Sci Rep; 2020 Jun; 10(1):9862. PubMed ID: 32555395 [TBL] [Abstract][Full Text] [Related]
6. Identification of prognostic gene signature associated with microenvironment of lung adenocarcinoma. Yue C; Ma H; Zhou Y PeerJ; 2019; 7():e8128. PubMed ID: 31803536 [TBL] [Abstract][Full Text] [Related]
7. A Cholangiocarcinoma Prediction Model Based on Random Forest and Artificial Neural Network Algorithm. Liao J; Meng C; Liu B; Zheng M; Qin J J Coll Physicians Surg Pak; 2023 May; 33(5):578-586. PubMed ID: 37190696 [TBL] [Abstract][Full Text] [Related]
8. Identification of aberrantly methylated differentially expressed genes and associated pathways in endometrial cancer using integrated bioinformatic analysis. Liu J; Wan Y; Li S; Qiu H; Jiang Y; Ma X; Zhou S; Cheng W Cancer Med; 2020 May; 9(10):3522-3536. PubMed ID: 32170852 [TBL] [Abstract][Full Text] [Related]
9. Identification of Potential Crucial Genes Associated With the Pathogenesis and Prognosis of Endometrial Cancer. Liu L; Lin J; He H Front Genet; 2019; 10():373. PubMed ID: 31105744 [TBL] [Abstract][Full Text] [Related]
10. Identifying Explainable Machine Learning Models and a Novel SFRP2 Yang Z; Zhou D; Huang J Int J Mol Sci; 2023 Nov; 24(23):. PubMed ID: 38069266 [TBL] [Abstract][Full Text] [Related]
11. Overexpression of TICRR and PPIF confer poor prognosis in endometrial cancer identified by gene co-expression network analysis. Yang L; Cui Y; Sun X; Wang Y Aging (Albany NY); 2021 Jan; 13(3):4564-4589. PubMed ID: 33495413 [TBL] [Abstract][Full Text] [Related]
12. Development and validation of prediction model for early warning of ovarian metastasis risk of endometrial carcinoma. Zhao Q; Li Y; Wang T Medicine (Baltimore); 2023 Oct; 102(41):e35439. PubMed ID: 37832099 [TBL] [Abstract][Full Text] [Related]
13. [An artificial neural network diagnostic model for scleroderma and immune cell infiltration analysis based on mitochondria-associated genes]. Zuo Z; Meng Q; Cui J; Guo K; Bian H Nan Fang Yi Ke Da Xue Xue Bao; 2024 May; 44(5):920-929. PubMed ID: 38862450 [TBL] [Abstract][Full Text] [Related]
14. TTK, CDC25A, and ESPL1 as Prognostic Biomarkers for Endometrial Cancer. Yang Q; Yu B; Sun J Biomed Res Int; 2020; 2020():4625123. PubMed ID: 33282948 [TBL] [Abstract][Full Text] [Related]
15. Identification and validation of TNFRSF4 as a high-profile biomarker for prognosis and immunomodulation in endometrial carcinoma. Ma H; Feng PH; Yu SN; Lu ZH; Yu Q; Chen J BMC Cancer; 2022 May; 22(1):543. PubMed ID: 35562682 [TBL] [Abstract][Full Text] [Related]
16. Identification of six candidate genes for endometrial carcinoma by bioinformatics analysis. Zhu Y; Shi L; Chen P; Zhang Y; Zhu T World J Surg Oncol; 2020 Jul; 18(1):161. PubMed ID: 32641130 [TBL] [Abstract][Full Text] [Related]
17. Establishment and Analysis of an Artificial Neural Network Model for Early Detection of Polycystic Ovary Syndrome Using Machine Learning Techniques. Wu Y; Xiao Q; Wang S; Xu H; Fang Y J Inflamm Res; 2023; 16():5667-5676. PubMed ID: 38050562 [TBL] [Abstract][Full Text] [Related]
18. Identification and Validation of the Diagnostic Characteristic Genes of Ovarian Cancer by Bioinformatics and Machine Learning. Liu J; Liu L; Antwi PA; Luo Y; Liang F Front Genet; 2022; 13():858466. PubMed ID: 35719392 [No Abstract] [Full Text] [Related]
19. Identification of biomarkers associated with diagnosis and prognosis of colorectal cancer patients based on integrated bioinformatics analysis. Chen L; Lu D; Sun K; Xu Y; Hu P; Li X; Xu F Gene; 2019 Apr; 692():119-125. PubMed ID: 30654001 [TBL] [Abstract][Full Text] [Related]
20. Eleven genes associated with progression and prognosis of endometrial cancer (EC) identified by comprehensive bioinformatics analysis. Liu J; Zhou S; Li S; Jiang Y; Wan Y; Ma X; Cheng W Cancer Cell Int; 2019; 19():136. PubMed ID: 31139013 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]