These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 35741784)
1. WGCNA Analysis Identifies the Hub Genes Related to Heat Stress in Seedling of Rice ( Wang Y; Wang Y; Liu X; Zhou J; Deng H; Zhang G; Xiao Y; Tang W Genes (Basel); 2022 Jun; 13(6):. PubMed ID: 35741784 [TBL] [Abstract][Full Text] [Related]
2. Integrated RNA-Seq Analysis and Meta-QTLs Mapping Provide Insights into Cold Stress Response in Rice Seedling Roots. Kong W; Zhang C; Qiang Y; Zhong H; Zhao G; Li Y Int J Mol Sci; 2020 Jun; 21(13):. PubMed ID: 32610550 [TBL] [Abstract][Full Text] [Related]
3. Expression and interaction of small heat shock proteins (sHsps) in rice in response to heat stress. Chen X; Lin S; Liu Q; Huang J; Zhang W; Lin J; Wang Y; Ke Y; He H Biochim Biophys Acta; 2014 Apr; 1844(4):818-28. PubMed ID: 24566471 [TBL] [Abstract][Full Text] [Related]
4. Time-Series Transcriptomic Analysis of Contrasting Rice Materials under Heat Stress Reveals a Faster Response in the Tolerant Cultivar. Cai H; Wang H; Zhou L; Li B; Zhang S; He Y; Guo Y; You A; Jiao C; Xu Y Int J Mol Sci; 2023 May; 24(11):. PubMed ID: 37298358 [TBL] [Abstract][Full Text] [Related]
5. Identification of differentially expressed genes under heat stress conditions in rice (Oryza sativa L.). Wahab MMS; Akkareddy S; Shanthi P; Latha P Mol Biol Rep; 2020 Mar; 47(3):1935-1948. PubMed ID: 32067160 [TBL] [Abstract][Full Text] [Related]
6. Analysis of drought and heat stress response genes in rice using co-expression network and differentially expressed gene analyses. Cao G; Huang H; Yang Y; Xie B; Tang L PeerJ; 2024; 12():e17255. PubMed ID: 38708347 [TBL] [Abstract][Full Text] [Related]
7. Transcriptome Analysis Reveals the Dynamic and Rapid Transcriptional Reprogramming Involved in Heat Stress and Identification of Heat Response Genes in Rice. He Y; Guan H; Li B; Zhang S; Xu Y; Yao Y; Yang X; Zha Z; Guo Y; Jiao C; Cai H Int J Mol Sci; 2023 Sep; 24(19):. PubMed ID: 37834249 [TBL] [Abstract][Full Text] [Related]
8. Comparative transcriptome analysis of the mechanism difference in heat stress response between Wang Y; Wang Y; Chen W; Dong Y; Zhang G; Deng H; Liu X; Lu X; Wang F; Chen G; Xiao Y; Tang W Front Genet; 2023; 14():1135577. PubMed ID: 37153001 [TBL] [Abstract][Full Text] [Related]
9. Reproductive tissues-specific meta-QTLs and candidate genes for development of heat-tolerant rice cultivars. Raza Q; Riaz A; Bashir K; Sabar M Plant Mol Biol; 2020 Sep; 104(1-2):97-112. PubMed ID: 32643113 [TBL] [Abstract][Full Text] [Related]
10. Gene-coexpression network analysis identifies specific modules and hub genes related to cold stress in rice. Zeng Z; Zhang S; Li W; Chen B; Li W BMC Genomics; 2022 Apr; 23(1):251. PubMed ID: 35365095 [TBL] [Abstract][Full Text] [Related]
11. A comprehensive transcriptome analysis of contrasting rice cultivars highlights the role of auxin and ABA responsive genes in heat stress response. Sharma E; Borah P; Kaur A; Bhatnagar A; Mohapatra T; Kapoor S; Khurana JP Genomics; 2021 May; 113(3):1247-1261. PubMed ID: 33705886 [TBL] [Abstract][Full Text] [Related]
12. Transcriptome changes in rice (Oryza sativa L.) in response to high night temperature stress at the early milky stage. Liao JL; Zhou HW; Peng Q; Zhong PA; Zhang HY; He C; Huang YJ BMC Genomics; 2015 Jan; 16(1):18. PubMed ID: 25928563 [TBL] [Abstract][Full Text] [Related]
13. Integrated Transcriptomic and Metabolomic Analyses Uncover the Differential Mechanism in Saline-Alkaline Tolerance between Wang J; Hu K; Wang J; Gong Z; Li S; Deng X; Li Y Int J Mol Sci; 2023 Aug; 24(15):. PubMed ID: 37569762 [TBL] [Abstract][Full Text] [Related]
14. Over-expression of a protein disulfide isomerase gene from Methanothermobacter thermautotrophicus, enhances heat stress tolerance in rice. Wang X; Chen J; Liu C; Luo J; Yan X; Aihua Ai ; Cai Y; Xie H; Ding X; Peng X Gene; 2019 Feb; 684():124-130. PubMed ID: 30367983 [TBL] [Abstract][Full Text] [Related]
15. Genome-wide analysis of the complex transcriptional networks of rice developing seeds. Xue LJ; Zhang JJ; Xue HW PLoS One; 2012; 7(2):e31081. PubMed ID: 22363552 [TBL] [Abstract][Full Text] [Related]
16. The Methylation Patterns and Transcriptional Responses to Chilling Stress at the Seedling Stage in Rice. Guo H; Wu T; Li S; He Q; Yang Z; Zhang W; Gan Y; Sun P; Xiang G; Zhang H; Deng H Int J Mol Sci; 2019 Oct; 20(20):. PubMed ID: 31615063 [TBL] [Abstract][Full Text] [Related]
17. Transcriptomic Analysis Revealed the Common and Divergent Responses of Maize Seedling Leaves to Cold and Heat Stresses. Li Y; Wang X; Li Y; Zhang Y; Gou Z; Qi X; Zhang J Genes (Basel); 2020 Aug; 11(8):. PubMed ID: 32756433 [TBL] [Abstract][Full Text] [Related]
18. Enhanced heat and drought tolerance in transgenic rice seedlings overexpressing OsWRKY11 under the control of HSP101 promoter. Wu X; Shiroto Y; Kishitani S; Ito Y; Toriyama K Plant Cell Rep; 2009 Jan; 28(1):21-30. PubMed ID: 18818929 [TBL] [Abstract][Full Text] [Related]
19. A CCR4-associated factor 1, OsCAF1B, confers tolerance of low-temperature stress to rice seedlings. Fang JC; Tsai YC; Chou WL; Liu HY; Chang CC; Wu SJ; Lu CA Plant Mol Biol; 2021 Jan; 105(1-2):177-192. PubMed ID: 33025522 [TBL] [Abstract][Full Text] [Related]
20. Genes, pathways and transcription factors involved in seedling stage chilling stress tolerance in indica rice through RNA-Seq analysis. Pradhan SK; Pandit E; Nayak DK; Behera L; Mohapatra T BMC Plant Biol; 2019 Aug; 19(1):352. PubMed ID: 31412781 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]