These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 35742171)
1. A Comparison of Univariate and Multivariate Forecasting Models Predicting Emergency Department Patient Arrivals during the COVID-19 Pandemic. Etu EE; Monplaisir L; Masoud S; Arslanturk S; Emakhu J; Tenebe I; Miller JB; Hagerman T; Jourdan D; Krupp S Healthcare (Basel); 2022 Jun; 10(6):. PubMed ID: 35742171 [TBL] [Abstract][Full Text] [Related]
2. Accurate Forecasting of Emergency Department Arrivals With Internet Search Index and Machine Learning Models: Model Development and Performance Evaluation. Fan B; Peng J; Guo H; Gu H; Xu K; Wu T JMIR Med Inform; 2022 Jul; 10(7):e34504. PubMed ID: 35857360 [TBL] [Abstract][Full Text] [Related]
3. Performance evaluation of Emergency Department patient arrivals forecasting models by including meteorological and calendar information: A comparative study. Sudarshan VK; Brabrand M; Range TM; Wiil UK Comput Biol Med; 2021 Aug; 135():104541. PubMed ID: 34166880 [TBL] [Abstract][Full Text] [Related]
4. Short and Long term predictions of Hospital emergency department attendances. Jilani T; Housley G; Figueredo G; Tang PS; Hatton J; Shaw D Int J Med Inform; 2019 Sep; 129():167-174. PubMed ID: 31445251 [TBL] [Abstract][Full Text] [Related]
5. Real-time forecasting of emergency department arrivals using prehospital data. Asheim A; Bache-Wiig Bjørnsen LP; Næss-Pleym LE; Uleberg O; Dale J; Nilsen SM BMC Emerg Med; 2019 Aug; 19(1):42. PubMed ID: 31382882 [TBL] [Abstract][Full Text] [Related]
6. Forecasting daily emergency department arrivals using high-dimensional multivariate data: a feature selection approach. Tuominen J; Lomio F; Oksala N; Palomäki A; Peltonen J; Huttunen H; Roine A BMC Med Inform Decis Mak; 2022 May; 22(1):134. PubMed ID: 35581648 [TBL] [Abstract][Full Text] [Related]
7. Forecasting daily patient volumes in the emergency department. Jones SS; Thomas A; Evans RS; Welch SJ; Haug PJ; Snow GL Acad Emerg Med; 2008 Feb; 15(2):159-70. PubMed ID: 18275446 [TBL] [Abstract][Full Text] [Related]
8. Forecasting emergency department arrivals: a tutorial for emergency department directors. Côté MJ; Smith MA; Eitel DR; Akçali E Hosp Top; 2013; 91(1):9-19. PubMed ID: 23428111 [TBL] [Abstract][Full Text] [Related]
9. Forecasting patient arrivals at emergency department using calendar and meteorological information. Zhang Y; Zhang J; Tao M; Shu J; Zhu D Appl Intell (Dordr); 2022; 52(10):11232-11243. PubMed ID: 35079202 [TBL] [Abstract][Full Text] [Related]
10. Predicting daily emergency department visits using machine learning could increase accuracy. Gafni-Pappas G; Khan M Am J Emerg Med; 2023 Mar; 65():5-11. PubMed ID: 36574748 [TBL] [Abstract][Full Text] [Related]
11. Analyzing and Forecasting Pediatric Fever Clinic Visits in High Frequency Using Ensemble Time-Series Methods After the COVID-19 Pandemic in Hangzhou, China: Retrospective Study. Zhang W; Zhu Z; Zhao Y; Li Z; Chen L; Huang J; Li J; Yu G JMIR Med Inform; 2023 Sep; 11():e45846. PubMed ID: 37728972 [TBL] [Abstract][Full Text] [Related]
12. A comparison of multivariate and univariate time series approaches to modelling and forecasting emergency department demand in Western Australia. Aboagye-Sarfo P; Mai Q; Sanfilippo FM; Preen DB; Stewart LM; Fatovich DM J Biomed Inform; 2015 Oct; 57():62-73. PubMed ID: 26151668 [TBL] [Abstract][Full Text] [Related]
13. Using Google Flu Trends data in forecasting influenza-like-illness related ED visits in Omaha, Nebraska. Araz OM; Bentley D; Muelleman RL Am J Emerg Med; 2014 Sep; 32(9):1016-23. PubMed ID: 25037278 [TBL] [Abstract][Full Text] [Related]
14. A COVID-19 Pandemic Artificial Intelligence-Based System With Deep Learning Forecasting and Automatic Statistical Data Acquisition: Development and Implementation Study. Yu CS; Chang SS; Chang TH; Wu JL; Lin YJ; Chien HF; Chen RJ J Med Internet Res; 2021 May; 23(5):e27806. PubMed ID: 33900932 [TBL] [Abstract][Full Text] [Related]
15. Forecasting emergency department overcrowding: A deep learning framework. Harrou F; Dairi A; Kadri F; Sun Y Chaos Solitons Fractals; 2020 Oct; 139():110247. PubMed ID: 32982079 [TBL] [Abstract][Full Text] [Related]
16. Forecasting rheumatoid arthritis patient arrivals by including meteorological factors and air pollutants. Ye Z; Ye B; Ming Z; Shu J; Xia C; Xu L; Wan Y; Wei Z Sci Rep; 2024 Aug; 14(1):17840. PubMed ID: 39090144 [TBL] [Abstract][Full Text] [Related]
17. Forecasting Daily Volume and Acuity of Patients in the Emergency Department. Calegari R; Fogliatto FS; Lucini FR; Neyeloff J; Kuchenbecker RS; Schaan BD Comput Math Methods Med; 2016; 2016():3863268. PubMed ID: 27725842 [TBL] [Abstract][Full Text] [Related]
18. An explainable machine learning approach for hospital emergency department visits forecasting using continuous training and multi-model regression. Peláez-Rodríguez C; Torres-López R; Pérez-Aracil J; López-Laguna N; Sánchez-Rodríguez S; Salcedo-Sanz S Comput Methods Programs Biomed; 2024 Mar; 245():108033. PubMed ID: 38278030 [TBL] [Abstract][Full Text] [Related]
19. Forecasting daily emergency department visits using calendar variables and ambient temperature readings. Marcilio I; Hajat S; Gouveia N Acad Emerg Med; 2013 Aug; 20(8):769-77. PubMed ID: 24033619 [TBL] [Abstract][Full Text] [Related]
20. Internet search query data improve forecasts of daily emergency department volume. Tideman S; Santillana M; Bickel J; Reis B J Am Med Inform Assoc; 2019 Dec; 26(12):1574-1583. PubMed ID: 31730701 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]