These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 35742689)
41. Foodborne pathogens in milk and the dairy farm environment: food safety and public health implications. Oliver SP; Jayarao BM; Almeida RA Foodborne Pathog Dis; 2005; 2(2):115-29. PubMed ID: 15992306 [TBL] [Abstract][Full Text] [Related]
42. Incidence of spoilage fungi in the air of bakeries with different hygienic status. Valle Garcia M; Sonnenstrahl Bregão A; Parussolo G; Olivier Bernardi A; Stefanello A; Venturini Copetti M Int J Food Microbiol; 2019 Feb; 290():254-261. PubMed ID: 30390434 [TBL] [Abstract][Full Text] [Related]
43. Metagenome-based surveillance and diagnostic approaches to studying the microbial ecology of food production and processing environments. Doyle CJ; O'Toole PW; Cotter PD Environ Microbiol; 2017 Nov; 19(11):4382-4391. PubMed ID: 28730722 [TBL] [Abstract][Full Text] [Related]
44. Microbial source tracking: a tool for identifying sources of microbial contamination in the food chain. Fu LL; Li JR Crit Rev Food Sci Nutr; 2014; 54(6):699-707. PubMed ID: 24345044 [TBL] [Abstract][Full Text] [Related]
45. Consumer practices and prevalence of Campylobacter, Salmonella and norovirus in kitchens from six European countries. Møretrø T; Nguyen-The C; Didier P; Maître I; Izsó T; Kasza G; Skuland SE; Cardoso MJ; Ferreira VB; Teixeira P; Borda D; Dumitrascu L; Neagu C; Nicolau AI; Anfruns-Estrada E; Foden M; Voysey P; Langsrud S Int J Food Microbiol; 2021 Jun; 347():109172. PubMed ID: 33812164 [TBL] [Abstract][Full Text] [Related]
47. Changes in microbial contamination levels and prevalence of foodborne pathogens in alfalfa (Medicago sativa) and rapeseed (Brassica napus) during sprout production in manufacturing plants. Kim SA; Kim OM; Rhee MS Lett Appl Microbiol; 2013 Jan; 56(1):30-6. PubMed ID: 23051104 [TBL] [Abstract][Full Text] [Related]
48. Public health significance of zoonotic bacterial pathogens from bushmeat sold in urban markets of Gabon, Central Africa. Bachand N; Ravel A; Onanga R; Arsenault J; Gonzalez JP J Wildl Dis; 2012 Jul; 48(3):785-9. PubMed ID: 22740547 [TBL] [Abstract][Full Text] [Related]
49. Developing food safety cultures - are small catering businesses being neglected? Macauslan E Perspect Public Health; 2013 Nov; 133(6):304-5. PubMed ID: 24215012 [No Abstract] [Full Text] [Related]
50. Food, hygiene, and the laboratory. A short history of food poisoning in Britain, circa 1850-1950. Hardy A Soc Hist Med; 1999 Aug; 12(2):293-311. PubMed ID: 11623930 [TBL] [Abstract][Full Text] [Related]
51. Comparative study of visual inspections and microbiological sampling in premises manufacturing and selling high-risk foods. Tebbutt GM; Southwell JM Epidemiol Infect; 1989 Dec; 103(3):475-86. PubMed ID: 2558030 [TBL] [Abstract][Full Text] [Related]
52. The importance of hygiene in the domestic kitchen: implications for preparation and storage of food and infant formula. Redmond EC; Griffith CJ Perspect Public Health; 2009 Mar; 129(2):69-76. PubMed ID: 19354199 [TBL] [Abstract][Full Text] [Related]
53. Recent trends in bacterial decontamination of food products by hurdle technology: A synergistic approach using thermal and non-thermal processing techniques. Aaliya B; Valiyapeediyekkal Sunooj K; Navaf M; Parambil Akhila P; Sudheesh C; Ahmad Mir S; Sabu S; Sasidharan A; Theingi Hlaing M; George J Food Res Int; 2021 Sep; 147():110514. PubMed ID: 34399492 [TBL] [Abstract][Full Text] [Related]
54. Evaluation of Prerequisite Programs Implementation and Hygiene Practices at Social Food Services through Audits and Microbiological Surveillance. Garayoa R; Yánez N; Díez-Leturia M; Bes-Rastrollo M; Vitas AI J Food Sci; 2016 Apr; 81(4):M921-7. PubMed ID: 26953631 [TBL] [Abstract][Full Text] [Related]
55. A review on microbiological decontamination of fresh produce with nonthermal plasma. Pignata C; D'Angelo D; Fea E; Gilli G J Appl Microbiol; 2017 Jun; 122(6):1438-1455. PubMed ID: 28160353 [TBL] [Abstract][Full Text] [Related]
56. Minimally processed fruits as vehicles for foodborne pathogens. Melo J; Quintas C AIMS Microbiol; 2023; 9(1):1-19. PubMed ID: 36891538 [TBL] [Abstract][Full Text] [Related]
57. ASAS Centennial Paper: Developments and future outlook for preharvest food safety. Oliver SP; Patel DA; Callaway TR; Torrence ME J Anim Sci; 2009 Jan; 87(1):419-37. PubMed ID: 18708597 [TBL] [Abstract][Full Text] [Related]
58. [Microbiological evaluation of artisan coastal cheese and hygienic-locative evaluation of small shops in Córdoba, Colombia]. Ruíz-Pérez RA; Meneo-Morales NY; Chams-Chams LM Rev Salud Publica (Bogota); 2017; 19(3):311-317. PubMed ID: 30183934 [TBL] [Abstract][Full Text] [Related]
59. Hygienic Practices and Structural Conditions of the Food Processing Premises Were the Main Drivers of Microbiological Quality of Edible Ice Products in Binh Phuoc Province, Vietnam 2019. Tuyet Hanh TT; Hanh MH Environ Health Insights; 2020; 14():1178630220929722. PubMed ID: 32636635 [TBL] [Abstract][Full Text] [Related]
60. Review: Microbiological quality and safety of fruit juices--past, present and future perspectives. Tribst AA; Sant'Ana Ade S; de Massaguer PR Crit Rev Microbiol; 2009; 35(4):310-39. PubMed ID: 19863382 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]