These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 35742905)

  • 1. Immunomodulation of Melanoma by Chemo-Thermo-Immunotherapy Using Conjugates of Melanogenesis Substrate NPrCAP and Magnetite Nanoparticles: A Review.
    Tamura Y; Ito A; Wakamatsu K; Kamiya T; Torigoe T; Honda H; Yamashita T; Uhara H; Ito S; Jimbow K
    Int J Mol Sci; 2022 Jun; 23(12):. PubMed ID: 35742905
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Melanoma-Targeted Chemothermotherapy and In Situ Peptide Immunotherapy through HSP Production by Using Melanogenesis Substrate, NPrCAP, and Magnetite Nanoparticles.
    Jimbow K; Ishii-Osai Y; Ito S; Tamura Y; Ito A; Yoneta A; Kamiya T; Yamashita T; Honda H; Wakamatsu K; Murase K; Nohara S; Nakayama E; Hasegawa T; Yamamoto I; Kobayashi T
    J Skin Cancer; 2013; 2013():742925. PubMed ID: 23533767
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Growth inhibition of re-challenge B16 melanoma transplant by conjugates of melanogenesis substrate and magnetite nanoparticles as the basis for developing melanoma-targeted chemo-thermo-immunotherapy.
    Takada T; Yamashita T; Sato M; Sato A; Ono I; Tamura Y; Sato N; Miyamoto A; Ito A; Honda H; Wakamatsu K; Ito S; Jimbow K
    J Biomed Biotechnol; 2009; 2009():457936. PubMed ID: 19830247
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Melanoma-targeted chemo-thermo-immuno (CTI)-therapy using N-propionyl-4-S-cysteaminylphenol-magnetite nanoparticles elicits CTL response via heat shock protein-peptide complex release.
    Sato A; Tamura Y; Sato N; Yamashita T; Takada T; Sato M; Osai Y; Okura M; Ono I; Ito A; Honda H; Wakamatsu K; Ito S; Jimbow K
    Cancer Sci; 2010 Sep; 101(9):1939-46. PubMed ID: 20594194
    [TBL] [Abstract][Full Text] [Related]  

  • 5. N-propionyl-cysteaminylphenol-magnetite conjugate (NPrCAP/M) is a nanoparticle for the targeted growth suppression of melanoma cells.
    Sato M; Yamashita T; Ohkura M; Osai Y; Sato A; Takada T; Matsusaka H; Ono I; Tamura Y; Sato N; Sasaki Y; Ito A; Honda H; Wakamatsu K; Ito S; Jimbow K
    J Invest Dermatol; 2009 Sep; 129(9):2233-41. PubMed ID: 19295615
    [TBL] [Abstract][Full Text] [Related]  

  • 6. T-cell receptor repertoires of tumor-infiltrating lymphocytes after hyperthermia using functionalized magnetite nanoparticles.
    Ito A; Yamaguchi M; Okamoto N; Sanematsu Y; Kawabe Y; Wakamatsu K; Ito S; Honda H; Kobayashi T; Nakayama E; Tamura Y; Okura M; Yamashita T; Jimbow K; Kamihira M
    Nanomedicine (Lond); 2013 Jun; 8(6):891-902. PubMed ID: 23066648
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro anti-cancer efficacy of multi-functionalized magnetite nanoparticles combining alternating magnetic hyperthermia in glioblastoma cancer cells.
    Minaei SE; Khoei S; Khoee S; Vafashoar F; Mahabadi VP
    Mater Sci Eng C Mater Biol Appl; 2019 Aug; 101():575-587. PubMed ID: 31029351
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism of putative neo-antigen formation from N-propionyl-4-S-cysteaminylphenol, a tyrosinase substrate, in melanoma models.
    Ito S; Nishigaki A; Ishii-Osai Y; Ojika M; Wakamatsu K; Yamashita T; Tamura Y; Ito A; Honda H; Nakayama E; Jimbow K
    Biochem Pharmacol; 2012 Sep; 84(5):646-53. PubMed ID: 22728921
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular Events in the Melanogenesis Cascade as Novel Melanoma-Targeted Small Molecules: Principle and Development.
    Wakamatsu K; Ito A; Tamura Y; Hida T; Kamiya T; Torigoe T; Honda H; Ito S; Jimbow K
    Cancers (Basel); 2022 Nov; 14(22):. PubMed ID: 36428680
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 4-S-Cysteaminylphenol-loaded magnetite cationic liposomes for combination therapy of hyperthermia with chemotherapy against malignant melanoma.
    Ito A; Fujioka M; Yoshida T; Wakamatsu K; Ito S; Yamashita T; Jimbow K; Honda H
    Cancer Sci; 2007 Mar; 98(3):424-30. PubMed ID: 17270032
    [TBL] [Abstract][Full Text] [Related]  

  • 11.
    Wang L; Hervault A; Southern P; Sandre O; Couillaud F; Thanh NTK
    J Mater Chem B; 2020 Dec; 8(46):10527-10539. PubMed ID: 33179706
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnetic field-inducible drug-eluting nanoparticles for image-guided thermo-chemotherapy.
    Thirunavukkarasu GK; Cherukula K; Lee H; Jeong YY; Park IK; Lee JY
    Biomaterials; 2018 Oct; 180():240-252. PubMed ID: 30055399
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Applications of Magnetite Nanoparticles in Cancer Immunotherapies: Present Hallmarks and Future Perspectives.
    Song Q; Javid A; Zhang G; Li Y
    Front Immunol; 2021; 12():701485. PubMed ID: 34675914
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnetic hyperthermia and pH-responsive effective drug delivery to the sub-cellular level of human breast cancer cells by modified CoFe
    Oh Y; Moorthy MS; Manivasagan P; Bharathiraja S; Oh J
    Biochimie; 2017 Feb; 133():7-19. PubMed ID: 27916642
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective incorporation and specific cytocidal effect as the cellular basis for the antimelanoma action of sulphur containing tyrosine analogs.
    Thomas PD; Kishi H; Cao H; Ota M; Yamashita T; Singh S; Jimbow K
    J Invest Dermatol; 1999 Dec; 113(6):928-34. PubMed ID: 10594732
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advances in Magnetic Nanoparticle-Mediated Cancer Immune-Theranostics.
    Cheng HW; Tsao HY; Chiang CS; Chen SY
    Adv Healthc Mater; 2021 Jan; 10(1):e2001451. PubMed ID: 33135398
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnetic nanoparticles-based drug and gene delivery systems for the treatment of pulmonary diseases.
    El-Sherbiny IM; Elbaz NM; Sedki M; Elgammal A; Yacoub MH
    Nanomedicine (Lond); 2017 Feb; 12(4):387-402. PubMed ID: 28078950
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Induced cell toxicity originates dendritic cell death following magnetic hyperthermia treatment.
    Asín L; Goya GF; Tres A; Ibarra MR
    Cell Death Dis; 2013 Apr; 4(4):e596. PubMed ID: 23598408
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial, Temporal, and Dose Control of Drug Delivery using Noninvasive Magnetic Stimulation.
    Chen W; Cheng CA; Zink JI
    ACS Nano; 2019 Feb; 13(2):1292-1308. PubMed ID: 30633500
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Magnetic nanoparticle-induced hyperthermia with appropriate payloads: Paul Ehrlich's "magic (nano)bullet" for cancer theranostics?
    Datta NR; Krishnan S; Speiser DE; Neufeld E; Kuster N; Bodis S; Hofmann H
    Cancer Treat Rev; 2016 Nov; 50():217-227. PubMed ID: 27756009
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.