These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
428 related articles for article (PubMed ID: 35743006)
1. A Guide to Polysaccharide-Based Hydrogel Bioinks for 3D Bioprinting Applications. Teixeira MC; Lameirinhas NS; Carvalho JPF; Silvestre AJD; Vilela C; Freire CSR Int J Mol Sci; 2022 Jun; 23(12):. PubMed ID: 35743006 [TBL] [Abstract][Full Text] [Related]
2. Advancing bioinks for 3D bioprinting using reactive fillers: A review. Heid S; Boccaccini AR Acta Biomater; 2020 Sep; 113():1-22. PubMed ID: 32622053 [TBL] [Abstract][Full Text] [Related]
3. High-Fidelity Extrusion Bioprinting of Low-Printability Polymers Using Carbopol as a Rheology Modifier. Barreiro Carpio M; Gonzalez Martinez E; Dabaghi M; Ungureanu J; Arizpe Tafoya AV; Gonzalez Martinez DA; Hirota JA; Moran-Mirabal JM ACS Appl Mater Interfaces; 2023 Nov; 15(47):54234-54248. PubMed ID: 37964517 [TBL] [Abstract][Full Text] [Related]
4. Bioprinting 101: Design, Fabrication, and Evaluation of Cell-Laden 3D Bioprinted Scaffolds. Deo KA; Singh KA; Peak CW; Alge DL; Gaharwar AK Tissue Eng Part A; 2020 Mar; 26(5-6):318-338. PubMed ID: 32079490 [TBL] [Abstract][Full Text] [Related]
5. Nanocomposite bioinks for 3D bioprinting. Cai Y; Chang SY; Gan SW; Ma S; Lu WF; Yen CC Acta Biomater; 2022 Oct; 151():45-69. PubMed ID: 35970479 [TBL] [Abstract][Full Text] [Related]
6. Direct 3D Bioprinting of Tough and Antifatigue Cell-Laden Constructs Enabled by a Self-Healing Hydrogel Bioink. Liu Q; Yang J; Wang Y; Wu T; Liang Y; Deng K; Luan G; Chen Y; Huang Z; Yue K Biomacromolecules; 2023 Jun; 24(6):2549-2562. PubMed ID: 37115848 [TBL] [Abstract][Full Text] [Related]
7. 3D printing of cell-laden electroconductive bioinks for tissue engineering applications. Rastin H; Zhang B; Bi J; Hassan K; Tung TT; Losic D J Mater Chem B; 2020 Jul; 8(27):5862-5876. PubMed ID: 32558857 [TBL] [Abstract][Full Text] [Related]
8. Extracellular-Matrix-Reinforced Bioinks for 3D Bioprinting Human Tissue. De Santis MM; Alsafadi HN; Tas S; Bölükbas DA; Prithiviraj S; Da Silva IAN; Mittendorfer M; Ota C; Stegmayr J; Daoud F; Königshoff M; Swärd K; Wood JA; Tassieri M; Bourgine PE; Lindstedt S; Mohlin S; Wagner DE Adv Mater; 2021 Jan; 33(3):e2005476. PubMed ID: 33300242 [TBL] [Abstract][Full Text] [Related]
9. Polysaccharide hydrogel based 3D printed tumor models for chemotherapeutic drug screening. Gebeyehu A; Surapaneni SK; Huang J; Mondal A; Wang VZ; Haruna NF; Bagde A; Arthur P; Kutlehria S; Patel N; Rishi AK; Singh M Sci Rep; 2021 Jan; 11(1):372. PubMed ID: 33431915 [TBL] [Abstract][Full Text] [Related]
10. Tunable metacrylated silk fibroin-based hybrid bioinks for the bioprinting of tissue engineering scaffolds. Yang J; Li Z; Li S; Zhang Q; Zhou X; He C Biomater Sci; 2023 Feb; 11(5):1895-1909. PubMed ID: 36722864 [TBL] [Abstract][Full Text] [Related]
11. 3D bioprinting of mechanically tuned bioinks derived from cardiac decellularized extracellular matrix. Shin YJ; Shafranek RT; Tsui JH; Walcott J; Nelson A; Kim DH Acta Biomater; 2021 Jan; 119():75-88. PubMed ID: 33166713 [TBL] [Abstract][Full Text] [Related]
12. Hydrogel Bioink Reinforcement for Additive Manufacturing: A Focused Review of Emerging Strategies. Chimene D; Kaunas R; Gaharwar AK Adv Mater; 2020 Jan; 32(1):e1902026. PubMed ID: 31599073 [TBL] [Abstract][Full Text] [Related]
13. Photocurable Biopolymers for Coaxial Bioprinting. Costantini M; Barbetta A; Swieszkowski W; Seliktar D; Gargioli C; Rainer A Methods Mol Biol; 2021; 2147():45-54. PubMed ID: 32840809 [TBL] [Abstract][Full Text] [Related]
14. Cell-laden four-dimensional bioprinting using near-infrared-triggered shape-morphing alginate/polydopamine bioinks. Luo Y; Lin X; Chen B; Wei X Biofabrication; 2019 Sep; 11(4):045019. PubMed ID: 31394520 [TBL] [Abstract][Full Text] [Related]
15. Collagen-based bioinks for hard tissue engineering applications: a comprehensive review. Marques CF; Diogo GS; Pina S; Oliveira JM; Silva TH; Reis RL J Mater Sci Mater Med; 2019 Mar; 30(3):32. PubMed ID: 30840132 [TBL] [Abstract][Full Text] [Related]
16. Peptide-dendrimer-reinforced bioinks for 3D bioprinting of heterogeneous and biomimetic in vitro models. Zhou K; Ding R; Tao X; Cui Y; Yang J; Mao H; Gu Z Acta Biomater; 2023 Oct; 169():243-255. PubMed ID: 37572980 [TBL] [Abstract][Full Text] [Related]
17. Employing PEG crosslinkers to optimize cell viability in gel phase bioinks and tailor post printing mechanical properties. Rutz AL; Gargus ES; Hyland KE; Lewis PL; Setty A; Burghardt WR; Shah RN Acta Biomater; 2019 Nov; 99():121-132. PubMed ID: 31539655 [TBL] [Abstract][Full Text] [Related]
18. Exploiting the role of nanoparticles for use in hydrogel-based bioprinting applications: concept, design, and recent advances. Chakraborty A; Roy A; Ravi SP; Paul A Biomater Sci; 2021 Sep; 9(19):6337-6354. PubMed ID: 34397056 [TBL] [Abstract][Full Text] [Related]
19. Alginate-Based Bioinks for 3D Bioprinting and Fabrication of Anatomically Accurate Bone Grafts. Gonzalez-Fernandez T; Tenorio AJ; Campbell KT; Silva EA; Leach JK Tissue Eng Part A; 2021 Sep; 27(17-18):1168-1181. PubMed ID: 33218292 [TBL] [Abstract][Full Text] [Related]
20. Shear-Thinning and Thermo-Reversible Nanoengineered Inks for 3D Bioprinting. Wilson SA; Cross LM; Peak CW; Gaharwar AK ACS Appl Mater Interfaces; 2017 Dec; 9(50):43449-43458. PubMed ID: 29214803 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]