These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
475 related articles for article (PubMed ID: 35743077)
1. RNAi as a Foliar Spray: Efficiency and Challenges to Field Applications. Hoang BTL; Fletcher SJ; Brosnan CA; Ghodke AB; Manzie N; Mitter N Int J Mol Sci; 2022 Jun; 23(12):. PubMed ID: 35743077 [TBL] [Abstract][Full Text] [Related]
2. Spray-Induced Silencing of Pathogenicity Gene Sarkar A; Roy-Barman S Front Plant Sci; 2021; 12():733129. PubMed ID: 34899771 [TBL] [Abstract][Full Text] [Related]
3. Tuning Beforehand: A Foresight on RNA Interference (RNAi) and In Vitro-Derived dsRNAs to Enhance Crop Resilience to Biotic and Abiotic Stresses. Abdellatef E; Kamal NM; Tsujimoto H Int J Mol Sci; 2021 Jul; 22(14):. PubMed ID: 34299307 [TBL] [Abstract][Full Text] [Related]
4. Artificial nanovesicles for dsRNA delivery in spray-induced gene silencing for crop protection. Qiao L; Niño-Sánchez J; Hamby R; Capriotti L; Chen A; Mezzetti B; Jin H Plant Biotechnol J; 2023 Apr; 21(4):854-865. PubMed ID: 36601704 [TBL] [Abstract][Full Text] [Related]
5. dsRNA Uptake in Plant Pests and Pathogens: Insights into RNAi-Based Insect and Fungal Control Technology. Wytinck N; Manchur CL; Li VH; Whyard S; Belmonte MF Plants (Basel); 2020 Dec; 9(12):. PubMed ID: 33339102 [TBL] [Abstract][Full Text] [Related]
6. Double-stranded RNA Oral Delivery Methods to Induce RNA Interference in Phloem and Plant-sap-feeding Hemipteran Insects. Ghosh SKB; Hunter WB; Park AL; Gundersen-Rindal DE J Vis Exp; 2018 May; (135):. PubMed ID: 29782023 [TBL] [Abstract][Full Text] [Related]
7. Strategies for enhancing the efficiency of RNA interference in insects. Silver K; Cooper AM; Zhu KY Pest Manag Sci; 2021 Jun; 77(6):2645-2658. PubMed ID: 33440063 [TBL] [Abstract][Full Text] [Related]
8. Isolation and Characterization of Barley ( Schlemmer T; Barth P; Weipert L; Preußer C; Hardt M; Möbus A; Busche T; Koch A Int J Mol Sci; 2021 Jul; 22(13):. PubMed ID: 34281265 [TBL] [Abstract][Full Text] [Related]
9. The mysteries of insect RNAi: A focus on dsRNA uptake and transport. Vélez AM; Fishilevich E Pestic Biochem Physiol; 2018 Oct; 151():25-31. PubMed ID: 30704709 [TBL] [Abstract][Full Text] [Related]
10. Study on the efficiency of dsRNAs with increasing length in RNA-based silencing of the Höfle L; Biedenkopf D; Werner BT; Shrestha A; Jelonek L; Koch A RNA Biol; 2020 Apr; 17(4):463-473. PubMed ID: 31814508 [TBL] [Abstract][Full Text] [Related]
11. Requirements for fungal uptake of dsRNA and gene silencing in RNAi-based crop protection strategies. Šečić E; Kogel KH Curr Opin Biotechnol; 2021 Aug; 70():136-142. PubMed ID: 34000482 [TBL] [Abstract][Full Text] [Related]
12. Methods for Delivery of dsRNAs for Agricultural Pest Control: The Case of Lepidopteran Pests. Garbatti Factor B; de Moura Manoel Bento F; Figueira A Methods Mol Biol; 2022; 2360():317-345. PubMed ID: 34495524 [TBL] [Abstract][Full Text] [Related]
13. Plastid Transformation of Micro-Tom Tomato with a Hemipteran Double-Stranded RNA Results in RNA Interference in Multiple Insect Species. Kaplanoglu E; Kolotilin I; Menassa R; Donly C Int J Mol Sci; 2022 Apr; 23(7):. PubMed ID: 35409279 [TBL] [Abstract][Full Text] [Related]
14. Nanoparticle LDH enhances RNAi efficiency of dsRNA in piercing-sucking pests by promoting dsRNA stability and transport in plants. Cheng X; Zhou Q; Xiao J; Qin X; Zhang Y; Li X; Zheng W; Zhang H J Nanobiotechnology; 2024 Sep; 22(1):544. PubMed ID: 39237945 [TBL] [Abstract][Full Text] [Related]
15. Synthesizing Fluorescently Labeled dsRNAs and sRNAs to Visualize Fungal RNA Uptake. Hamby R; Wang M; Qiao L; Jin H Methods Mol Biol; 2020; 2166():215-225. PubMed ID: 32710411 [TBL] [Abstract][Full Text] [Related]
16. Double-stranded RNA (dsRNA) technology to control forest insect pests and fungal pathogens: challenges and opportunities. Singewar K; Fladung M Funct Integr Genomics; 2023 May; 23(2):185. PubMed ID: 37243792 [TBL] [Abstract][Full Text] [Related]
17. Molecular mechanisms influencing efficiency of RNA interference in insects. Cooper AM; Silver K; Zhang J; Park Y; Zhu KY Pest Manag Sci; 2019 Jan; 75(1):18-28. PubMed ID: 29931761 [TBL] [Abstract][Full Text] [Related]
18. BioClay™ prolongs RNA interference-mediated crop protection against Botrytis cinerea. Niño-Sánchez J; Sambasivam PT; Sawyer A; Hamby R; Chen A; Czislowski E; Li P; Manzie N; Gardiner DM; Ford R; Xu ZP; Mitter N; Jin H J Integr Plant Biol; 2022 Nov; 64(11):2187-2198. PubMed ID: 36040241 [TBL] [Abstract][Full Text] [Related]
19. Delivery of dsRNA for RNAi in insects: an overview and future directions. Yu N; Christiaens O; Liu J; Niu J; Cappelle K; Caccia S; Huvenne H; Smagghe G Insect Sci; 2013 Feb; 20(1):4-14. PubMed ID: 23955821 [TBL] [Abstract][Full Text] [Related]
20. New Frontiers in Pest Control: Chitosan Nanoparticles-Shielded dsRNA as an Effective Topical RNAi Spray for Gram Podborer Biocontrol. Kolge H; Kadam K; Galande S; Lanjekar V; Ghormade V ACS Appl Bio Mater; 2021 Jun; 4(6):5145-5157. PubMed ID: 35006998 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]