BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 35743252)

  • 1. Derangements and Reversibility of Energy Metabolism in Failing Hearts Resulting from Volume Overload: Transcriptomics and Metabolomics Analyses.
    Tung YC; Cheng ML; Wu LS; Tang HY; Huang CY; Chang GJ; Chang CJ
    Int J Mol Sci; 2022 Jun; 23(12):. PubMed ID: 35743252
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energy metabolic reprogramming in the hypertrophied and early stage failing heart: a multisystems approach.
    Lai L; Leone TC; Keller MP; Martin OJ; Broman AT; Nigro J; Kapoor K; Koves TR; Stevens R; Ilkayeva OR; Vega RB; Attie AD; Muoio DM; Kelly DP
    Circ Heart Fail; 2014 Nov; 7(6):1022-31. PubMed ID: 25236884
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ablation of cardiac TIGAR preserves myocardial energetics and cardiac function in the pressure overload heart failure model.
    Okawa Y; Hoshino A; Ariyoshi M; Kaimoto S; Tateishi S; Ono K; Uchihashi M; Iwai-Kanai E; Matoba S
    Am J Physiol Heart Circ Physiol; 2019 Jun; 316(6):H1366-H1377. PubMed ID: 30901275
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrated Omic Analysis of a Guinea Pig Model of Heart Failure and Sudden Cardiac Death.
    Foster DB; Liu T; Kammers K; O'Meally R; Yang N; Papanicolaou KN; Talbot CC; Cole RN; O'Rourke B
    J Proteome Res; 2016 Sep; 15(9):3009-28. PubMed ID: 27399916
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decreased rates of substrate oxidation ex vivo predict the onset of heart failure and contractile dysfunction in rats with pressure overload.
    Doenst T; Pytel G; Schrepper A; Amorim P; Färber G; Shingu Y; Mohr FW; Schwarzer M
    Cardiovasc Res; 2010 Jun; 86(3):461-70. PubMed ID: 20035032
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cardiac hypertrophy in the newborn delays the maturation of fatty acid β-oxidation and compromises postischemic functional recovery.
    Oka T; Lam VH; Zhang L; Keung W; Cadete VJ; Samokhvalov V; Tanner BA; Beker DL; Ussher JR; Huqi A; Jaswal JS; Rebeyka IM; Lopaschuk GD
    Am J Physiol Heart Circ Physiol; 2012 May; 302(9):H1784-94. PubMed ID: 22408020
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increased ketone body oxidation provides additional energy for the failing heart without improving cardiac efficiency.
    Ho KL; Zhang L; Wagg C; Al Batran R; Gopal K; Levasseur J; Leone T; Dyck JRB; Ussher JR; Muoio DM; Kelly DP; Lopaschuk GD
    Cardiovasc Res; 2019 Sep; 115(11):1606-1616. PubMed ID: 30778524
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic characterization of volume overload heart failure due to aorto-caval fistula in rats.
    Melenovsky V; Benes J; Skaroupkova P; Sedmera D; Strnad H; Kolar M; Vlcek C; Petrak J; Benes J; Papousek F; Oliyarnyk O; Kazdova L; Cervenka L
    Mol Cell Biochem; 2011 Aug; 354(1-2):83-96. PubMed ID: 21465236
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Uncoupling of glycolysis from glucose oxidation accompanies the development of heart failure with preserved ejection fraction.
    Fillmore N; Levasseur JL; Fukushima A; Wagg CS; Wang W; Dyck JRB; Lopaschuk GD
    Mol Med; 2018 Mar; 24(1):3. PubMed ID: 30134787
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cardiac Energy Metabolism in Heart Failure.
    Lopaschuk GD; Karwi QG; Tian R; Wende AR; Abel ED
    Circ Res; 2021 May; 128(10):1487-1513. PubMed ID: 33983836
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glucose is preferentially utilized for biomass synthesis in pressure-overloaded hearts: evidence from fatty acid-binding protein-4 and -5 knockout mice.
    Umbarawan Y; Syamsunarno MRAA; Koitabashi N; Yamaguchi A; Hanaoka H; Hishiki T; Nagahata-Naito Y; Obinata H; Sano M; Sunaga H; Matsui H; Tsushima Y; Suematsu M; Kurabayashi M; Iso T
    Cardiovasc Res; 2018 Jul; 114(8):1132-1144. PubMed ID: 29554241
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic remodeling in moderate synchronous versus dyssynchronous pacing-induced heart failure: integrated metabolomics and proteomics study.
    Shibayama J; Yuzyuk TN; Cox J; Makaju A; Miller M; Lichter J; Li H; Leavy JD; Franklin S; Zaitsev AV
    PLoS One; 2015; 10(3):e0118974. PubMed ID: 25790351
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activation of PPAR-α in the early stage of heart failure maintained myocardial function and energetics in pressure-overload heart failure.
    Kaimoto S; Hoshino A; Ariyoshi M; Okawa Y; Tateishi S; Ono K; Uchihashi M; Fukai K; Iwai-Kanai E; Matoba S
    Am J Physiol Heart Circ Physiol; 2017 Feb; 312(2):H305-H313. PubMed ID: 28011586
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteomic analysis of mitochondria reveals a metabolic switch from fatty acid oxidation to glycolysis in the failing heart.
    Wang J; Bai L; Li J; Sun C; Zhao J; Cui C; Han K; Liu Y; Zhuo X; Wang T; Liu P; Fan F; Guan Y; Ma A
    Sci China C Life Sci; 2009 Nov; 52(11):1003-10. PubMed ID: 19937197
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The energy substrate switch during development of heart failure: gene regulatory mechanisms (Review).
    Sack MN; Kelly DP
    Int J Mol Med; 1998 Jan; 1(1):17-24. PubMed ID: 9852194
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cardiac insulin-resistance and decreased mitochondrial energy production precede the development of systolic heart failure after pressure-overload hypertrophy.
    Zhang L; Jaswal JS; Ussher JR; Sankaralingam S; Wagg C; Zaugg M; Lopaschuk GD
    Circ Heart Fail; 2013 Sep; 6(5):1039-48. PubMed ID: 23861485
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Astragaloside IV alleviates heart failure via activating PPARα to switch glycolysis to fatty acid β-oxidation.
    Dong Z; Zhao P; Xu M; Zhang C; Guo W; Chen H; Tian J; Wei H; Lu R; Cao T
    Sci Rep; 2017 Jun; 7(1):2691. PubMed ID: 28578382
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcriptional Changes Associated with Long-Term Left Ventricle Volume Overload in Rats: Impact on Enzymes Related to Myocardial Energy Metabolism.
    Roussel E; Drolet MC; Walsh-Wilkinson E; Dhahri W; Lachance D; Gascon S; Sarrhini O; Rousseau JA; Lecomte R; Couet J; Arsenault M
    Biomed Res Int; 2015; 2015():949624. PubMed ID: 26583150
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heart specific PGC-1α deletion identifies metabolome of cardiac restricted metabolic heart failure.
    Kärkkäinen O; Tuomainen T; Mutikainen M; Lehtonen M; Ruas JL; Hanhineva K; Tavi P
    Cardiovasc Res; 2019 Jan; 115(1):107-118. PubMed ID: 29931052
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Myocardial fatty acid uptake through CD36 is indispensable for sufficient bioenergetic metabolism to prevent progression of pressure overload-induced heart failure.
    Umbarawan Y; Syamsunarno MRAA; Koitabashi N; Obinata H; Yamaguchi A; Hanaoka H; Hishiki T; Hayakawa N; Sano M; Sunaga H; Matsui H; Tsushima Y; Suematsu M; Kurabayashi M; Iso T
    Sci Rep; 2018 Aug; 8(1):12035. PubMed ID: 30104639
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.